Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation".

Overview

I2V-GAN

This repository is the official Pytorch implementation for ACMMM2021 paper
"I2V-GAN: Unpaired Infrared-to-Visible Video Translation".

Traffic I2V Example:

compair_gif01

Monitoring I2V Example:

compair_gif02

Flower Translation Example:

compair_gif03

Introduction

Abstract

Human vision is often adversely affected by complex environmental factors, especially in night vision scenarios. Thus, infrared cameras are often leveraged to help enhance the visual effects via detecting infrared radiation in the surrounding environment, but the infrared videos are undesirable due to the lack of detailed semantic information. In such a case, an effective video-to-video translation method from the infrared domain to the visible counterpart is strongly needed by overcoming the intrinsic huge gap between infrared and visible fields.
Our work propose an infrared-to-visible (I2V) video translation method I2V-GAN to generate fine-grained and spatial-temporal consistent visible light video by given an unpaired infrared video.
The backbone network follows Cycle-GAN and Recycle-GAN.
compaire

Technically, our model capitalizes on three types of constraints: adversarial constraint to generate synthetic frame that is similar to the real one, cyclic consistency with the introduced perceptual loss for effective content conversion as well as style preservation, and similarity constraint across and within domains to enhance the content and motion consistency in both spatial and temporal spaces at a fine-grained level.

network-all

IRVI Dataset

Click here to download IRVI dataset from Baidu Netdisk. Access code: IRVI.

data_samples

Data Structure

SUBSET TRAIN TEST TOTAL FRAME
Traffic 17000 1000 18000
Mornitoring sub-1 1384 347 1731 6352
sub-2 1040 260 1300
sub-3 1232 308 1540
sub-4 672 169 841
sub-5 752 188 940

Installation

The code is implemented with Python(3.6) and Pytorch(1.9.0) for CUDA Version 11.2

Install dependencies:
pip install -r requirements.txt

Usage

Train

python train.py --dataroot /path/to/dataset \
--display_env visdom_env_name --name exp_name \
--model i2vgan --which_model_netG resnet_6blocks \
--no_dropout --pool_size 0 \
--which_model_netP unet_128 --npf 8 --dataset_mode unaligned_triplet

Test

python test.py --dataroot /path/to/dataset \
--which_epoch latest --name exp_name --model cycle_gan \
--which_model_netG resnet_6blocks --which_model_netP unet_128 \
--dataset_mode unaligned --no_dropout --loadSize 256 --resize_or_crop crop

Citation

If you find our work useful in your research or publication, please cite our work:

@inproceedings{I2V-GAN2021,
  title     = {I2V-GAN: Unpaired Infrared-to-Visible Video Translation},
  author    = {Shuang Li and Bingfeng Han and Zhenjie Yu and Chi Harold Liu and Kai Chen and Shuigen Wang},
  booktitle = {ACMMM},
  year      = {2021}
}

Acknowledgements

This code borrows heavily from the PyTorch implementation of Cycle-GAN and Pix2Pix and RecycleGAN.
A huge thanks to them!

@inproceedings{CycleGAN2017,
  title     = {Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networkss},
  author    = {Zhu, Jun-Yan and Park, Taesung and Isola, Phillip and Efros, Alexei A},
  booktitle = {ICCV},
  year      = {2017}
}

@inproceedings{Recycle-GAN2018,
  title     = {Recycle-GAN: Unsupervised Video Retargeting},
  author    = {Aayush Bansal and Shugao Ma and Deva Ramanan and Yaser Sheikh},
  booktitle = {ECCV},
  year      = {2018}
}
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
ECAENet (TensorFlow and Keras)

ECAENet: EfficientNet with Efficient Channel Attention for Plant Species Recognition (SCI:Q3) (Journal of Intelligent & Fuzzy Systems)

4 Dec 22, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
Generating Videos with Scene Dynamics

Generating Videos with Scene Dynamics This repository contains an implementation of Generating Videos with Scene Dynamics by Carl Vondrick, Hamed Pirs

Carl Vondrick 706 Jan 04, 2023
Contains source code for the winning solution of the xView3 challenge

Winning Solution for xView3 Challenge This repository contains source code and pretrained models for my (Eugene Khvedchenya) solution to xView 3 Chall

Eugene Khvedchenya 51 Dec 30, 2022
(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.

DARS Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021

CVMI Lab 58 Jan 01, 2023
Navigating StyleGAN2 w latent space using CLIP

Navigating StyleGAN2 w latent space using CLIP an attempt to build sth with the official SG2-ADA Pytorch impl kinda inspired by Generating Images from

Mike K. 55 Dec 06, 2022
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |

Boyuan Chen 32 Jan 02, 2023
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
🧑‍🔬 verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Monte Carlo Simulation to the Paper A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Sören Kohnert 0 Dec 06, 2021
Code for Dual Contrastive Learning for Unsupervised Image-to-Image Translation, NTIRE, CVPRW 2021.

arXiv Dual Contrastive Learning Adversarial Generative Networks (DCLGAN) We provide our PyTorch implementation of DCLGAN, which is a simple yet powerf

119 Dec 04, 2022
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo

Google 302 Dec 23, 2022
[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Chasing Sparsity in Vision Transformers: An End-to-End Exploration Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Explora

VITA 64 Dec 08, 2022
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto

Facebook Research 145 Dec 30, 2022
GuideDog is an AI/ML-based mobile app designed to assist the lives of the visually impaired, 100% voice-controlled

Guidedog Authors: Kyuhee Jo, Steven Gunarso, Jacky Wang, Raghav Sharma GuideDog is an AI/ML-based mobile app designed to assist the lives of the visua

Kyuhee Jo 5 Nov 24, 2021