Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples"

Related tags

Deep LearningKSTER
Overview

KSTER

Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples" [paper].

Usage

Download the processed datasets from this site. You can also download the built databases from this site and download the model checkpoints from this site.

Train a general-domain base model

Take English -> Germain translation for example.

export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m joeynmt train configs/transformer_base_wmt14_en2de.yaml

Finetuning trained base model on domain-specific datasets

Take English -> Germain translation in Koran domain for example.

export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m joeynmt train configs/transformer_base_koran_en2de.yaml

Build database

Take English -> Germain translation in Koran domain for example, wmt14_en_de.transformer.ckpt is the path of trained general-domain base model checkpoint.

mkdir database/koran_en_de_base
export CUDA_VISIBLE_DEVICES=0
python3 -m joeynmt build_database configs/transformer_base_koran_en2de.yaml \
        --ckpt wmt14_en_de.transformer.ckpt \
        --division train \
        --index_path database/koran_en_de_base/trained.index \
        --token_map_path database/koran_en_de_base/token_map \
        --embedding_path database/koran_en_de_base/embeddings.npy

Train the bandwidth estimator and weight estimator in KSTER

Take English -> Germain translation in Koran domain for example.

export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m joeynmt combiner_train configs/transformer_base_koran_en2de.yaml \
        --ckpt wmt14_en_de.transformer.ckpt \
        --combiner dynamic_combiner \
        --top_k 16 \
        --kernel laplacian \
        --index_path database/koran_en_de_base/trained.index \
        --token_map_path database/koran_en_de_base/token_map \
        --embedding_path database/koran_en_de_base/embeddings.npy \
        --in_memory True

Inference

We unify the inference of base model, finetuned or joint-trained model, kNN-MT and KSTER with a concept of combiner (see joeynmt/combiners.py).

Combiner type Methods Description
NoCombiner Base, Finetuning, Joint-training Directly inference without retrieval.
StaticCombiner kNN-MT Retrieve similar examples during inference. mixing_weight and bandwidth are pre-specified.
DynamicCombiner KSTER Retrieve similar examples during inference. mixing_weight and bandwidth are dynamically estimated.

Inference with NoCombiner for Base model

Take English -> Germain translation in Koran domain for example.

export CUDA_VISIBLE_DEVICES=0
python3 -m joeynmt test configs/transformer_base_koran_en2de.yaml \
        --ckpt wmt14_en_de.transformer.ckpt \
        --combiner no_combiner

Inference with StaticCombiner for kNN-MT

Take English -> Germain translation in Koran domain for example.

export CUDA_VISIBLE_DEVICES=0
python3 -m joeynmt test configs/transformer_base_koran_en2de.yaml \
        --ckpt wmt14_en_de.transformer.ckpt \
        --combiner static_combiner \
        --top_k 16 \
        --mixing_weight 0.7 \
        --bandwidth 10 \
        --kernel gaussian \
        --index_path database/koran_en_de_base/trained.index \
        --token_map_path database/koran_en_de_base/token_map

Inference with DynamicCombiner for KSTER

Take English -> Germain translation in Koran domain for example, koran_en_de.laplacian.combiner.ckpt is the path of trained bandwidth estimator and weight estimator for Koran domain.
--in_memory option specifies whether to load the example embeddings to memory. Set in_memory == True for faster inference, set in_memory == False for lower memory demand.

export CUDA_VISIBLE_DEVICES=0
python3 -m joeynmt test configs/transformer_base_koran_en2de.yaml \
        --ckpt wmt14_en_de.transformer.ckpt \
        --combiner dynamic_combiner \
        --combiner_path koran_en_de.laplacian.combiner.ckpt \
        --top_k 16 \
        --kernel laplacian \
        --index_path database/koran_en_de_base/trained.index \
        --token_map_path database/koran_en_de_base/token_map \
        --embedding_path database/koran_en_de_base/embeddings.npy \
        --in_memory True

See bash_scripts/test_*.sh for reproducing our results.
See logs/*.log for the logs of our results.

Acknowledgements

We build the models based on the joeynmt codebase.

Owner
jiangqn
Interested in natural language processing and machine learning.
jiangqn
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urb

Yu Tian 117 Jan 03, 2023
Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami

ZJU3DV 1.4k Jan 04, 2023
X-VLM: Multi-Grained Vision Language Pre-Training

X-VLM: learning multi-grained vision language alignments Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. Yan Zeng, Xi

Yan Zeng 286 Dec 23, 2022
Gauge equivariant mesh cnn

Geometric Mesh CNN The code in this repository is an implementation of the Gauge Equivariant Mesh CNN introduced in the paper Gauge Equivariant Mesh C

50 Dec 18, 2022
Source code for the paper: Variance-Aware Machine Translation Test Sets (NeurIPS 2021 Datasets and Benchmarks Track)

Variance-Aware-MT-Test-Sets Variance-Aware Machine Translation Test Sets License See LICENSE. We follow the data licensing plan as the same as the WMT

NLP2CT Lab, University of Macau 5 Dec 21, 2021
Transformer in Vision

Transformer-in-Vision Recent Transformer-based CV and related works. Welcome to comment/contribute! Keep updated. Resource SCENIC: A JAX Library for C

Yong-Lu Li 1.1k Dec 30, 2022
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
Transformer based SAR image despeckling

Transformer based SAR image despeckling Using the code: The code is stable while using Python 3.6.13, CUDA =10.1 Clone this repository: git clone htt

27 Nov 13, 2022
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
Implementation of Multistream Transformers in Pytorch

Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi

Phil Wang 47 Jul 26, 2022
Objax Apache-2Objax (🥉19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Google 729 Jan 02, 2023
Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

🍐 quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding 🍐 Installation $ git clone

Andrew Jesson 19 Jun 23, 2022
RRL: Resnet as representation for Reinforcement Learning

Resnet as representation for Reinforcement Learning (RRL) is a simple yet effective approach for training behaviors directly from visual inputs. We demonstrate that features learned by standard image

Meta Research 21 Dec 07, 2022
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

TailCalibX : Feature Generation for Long-tail Classification by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi [arXiv] [

Rahul Vigneswaran 34 Jan 02, 2023
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Son Tran 6 Oct 04, 2022
chen2020iros: Learning an Overlap-based Observation Model for 3D LiDAR Localization.

Overlap-based 3D LiDAR Monte Carlo Localization This repo contains the code for our IROS2020 paper: Learning an Overlap-based Observation Model for 3D

Photogrammetry & Robotics Bonn 219 Dec 15, 2022