Reinforcement learning for self-driving in a 3D simulation

Overview

SelfDrive_AI

Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D)

1. Requirements for the SelfDrive_AI Gym


You need Python 3.6 or later to run the simulation. (Note: the current environment is only supported in windows) Also, you can directly interact with the simulation by clicking the exe file and then by using W,A, S and D keys.

Please follow the two links below to install Unity-Gym and Stable-Baselines. Also, you can train it using your custom reinforcement learning algorithms by following the OpenAI gym structure (https://gym.openai.com/).

Install Unity-Gym

Install Stable-Baselines3

mlagents can be installed using pip:

$ python3 -m pip install mlagents

The image below illustrates the target goal of the AIcar, where the car needs to explore all the trajectories to find the bridge first.

2. (Training) You can train the environment by using the code below which has OpenAI gym structure. It will save the training results into a log directory which you can view using tensorboard. Feel free to change the parameters inside the code

from stable_baselines3 import PPO, SAC, ppo
from mlagents_envs.side_channel.engine_configuration_channel import EngineConfigurationChannel
channel = EngineConfigurationChannel()
from gym_unity.envs import UnityToGymWrapper
from mlagents_envs.environment import UnityEnvironment
import time,os
from stable_baselines3.common.vec_env import DummyVecEnv
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.policies import ActorCriticPolicy
import math


env_name = "./UnityEnv"
speed = 15


env = UnityEnvironment(env_name,seed=1, side_channels=[channel])
channel.set_configuration_parameters(time_scale =speed)
env= UnityToGymWrapper(env, uint8_visual=False) # OpenAI gym interface created using UNITY

time_int = int(time.time())

# Diretories for storing results 
log_dir = "stable_results/Euler_env_3{}/".format(time_int)
log_dirTF = "stable_results/tensorflow_log_Euler3{}/".format(time_int) 
os.makedirs(log_dir, exist_ok=True)

env = Monitor(env, log_dir, allow_early_resets=True)
env = DummyVecEnv([lambda: env])  # The algorithms require a vectorized environment to run


model = PPO(ActorCriticPolicy, env, verbose=1, tensorboard_log=log_dirTF, device='cuda')
model.learn(int(200000)) # you can change the step size
time_int2 = int(time.time()) 
print('TIME TAKEN for training',time_int-time_int2)
# # save the model
model.save("Env_model")


# # # # # LOAD FOR TESTING
# del model
model = PPO.load("Env_model")

obs = env.reset()

# Test the agent for 1000 steps after training

for i in range(400):
    action, states = model.predict(obs)
    obs, rewards, done, info = env.step(action)
    env.render()



To monitor the training progress using tensorboard you type the following command from the terminal

$ tensorboard --logdir "HERE PUT THE PATH TO THE DIRECTORY"

Glimpse from the simulation environment

3. (Testing) The following code can be used to test the trained Humanoid Agent

from stable_baselines3 import PPO, SAC, ppo
from mlagents_envs.side_channel.engine_configuration_channel import EngineConfigurationChannel
channel = EngineConfigurationChannel()
from gym_unity.envs import UnityToGymWrapper
from mlagents_envs.environment import UnityEnvironment
import time,os
from stable_baselines3.common.vec_env import DummyVecEnv
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.policies import ActorCriticPolicy
import math


env_name = "./UnityEnv"
speed = 1


env = UnityEnvironment(env_name,seed=1, side_channels=[channel])
channel.set_configuration_parameters(time_scale =speed)
env= UnityToGymWrapper(env, uint8_visual=False) # OpenAI gym interface created using UNITY

time_int = int(time.time())

# Diretories for storing results
log_dir = "stable_results/Euler_env_3{}/".format(time_int)
log_dirTF = "stable_results/tensorflow_log_Euler3{}/".format(time_int)
os.makedirs(log_dir, exist_ok=True)

env = Monitor(env, log_dir, allow_early_resets=True)
env = DummyVecEnv([lambda: env])  # The algorithms require a vectorized environment to run


model = PPO.load("Env_model")

obs = env.reset()

# Test the agent for 1000 steps after training

for i in range(1000):
    action, states = model.predict(obs)
    obs, rewards, done, info = env.step(action)
    env.render()

***Note: I am still developing the project by inducing more challenging constraints.

Owner
Surajit Saikia
Roboticist | PhD in AI | Deep learning, Reinforcement learning and Computer Vision.
Surajit Saikia
JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces

JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces JAXMAPP is a JAX-based library for multi-agent path planning (MAPP) in c

OMRON SINIC X 24 Dec 28, 2022
Memory efficient transducer loss computation

Introduction This project implements the optimization techniques proposed in Improving RNN Transducer Modeling for End-to-End Speech Recognition to re

Fangjun Kuang 51 Nov 25, 2022
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
Realtime YOLO Monster Detection With Non Maximum Supression

Realtime-YOLO-Monster-Detection-With-Non-Maximum-Supression Table of Contents In

5 Oct 07, 2022
A benchmark for the task of translation suggestion

WeTS: A Benchmark for Translation Suggestion Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire d

zhyang 55 Dec 24, 2022
Face recognition with trained classifiers for detecting objects using OpenCV

Face_Detector Face recognition with trained classifiers for detecting objects using OpenCV Libraries required to be installed using pip Command: cv2 n

Chumui Tripura 0 Oct 31, 2021
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
Neural Ensemble Search for Performant and Calibrated Predictions

Neural Ensemble Search Introduction This repo contains the code accompanying the paper: Neural Ensemble Search for Performant and Calibrated Predictio

AutoML-Freiburg-Hannover 26 Dec 12, 2022
Character Grounding and Re-Identification in Story of Videos and Text Descriptions

Character in Story Identification Network (CiSIN) This project hosts the code for our paper. Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung and

8 Dec 09, 2022
fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022
Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation".

I2V-GAN This repository is the official Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation". Traffic

69 Dec 31, 2022
Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Thang Vu 15 Dec 02, 2022
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022
SplineConv implementation for Paddle.

SplineConv implementation for Paddle This module implements the SplineConv operators from Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Mül

北海若 3 Dec 29, 2021
MMRazor: a model compression toolkit for model slimming and AutoML

Documentation: https://mmrazor.readthedocs.io/ English | 简体中文 Introduction MMRazor is a model compression toolkit for model slimming and AutoML, which

OpenMMLab 899 Jan 02, 2023
Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes This repository is the official implementation of Us

Damien Bouchabou 0 Oct 18, 2021