Python implementation of "Elliptic Fourier Features of a Closed Contour"

Overview

PyEFD

Build and Test Documentation Status image image image

An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1].

Installation

pip install pyefd

Usage

Given a closed contour of a shape, generated by e.g. scikit-image or OpenCV, this package can fit a Fourier series approximating the shape of the contour.

General usage examples

This section describes the general usage patterns of pyefd.

from pyefd import elliptic_fourier_descriptors
coeffs = elliptic_fourier_descriptors(contour, order=10)

The coefficients returned are the a_n, b_n, c_n and d_n of the following Fourier series representation of the shape.

The coefficients returned are by default normalized so that they are rotation and size-invariant. This can be overridden by calling:

from pyefd import elliptic_fourier_descriptors
coeffs = elliptic_fourier_descriptors(contour, order=10, normalize=False)

Normalization can also be done afterwards:

from pyefd import normalize_efd
coeffs = normalize_efd(coeffs)

OpenCV example

If you are using OpenCV to generate contours, this example shows how to connect it to pyefd.

import cv2 
import numpy
from pyefd import elliptic_fourier_descriptors

# Find the contours of a binary image using OpenCV.
contours, hierarchy = cv2.findContours(
    im, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# Iterate through all contours found and store each contour's 
# elliptical Fourier descriptor's coefficients.
coeffs = []
for cnt in contours:
    # Find the coefficients of all contours
    coeffs.append(elliptic_fourier_descriptors(
        numpy.squeeze(cnt), order=10))

Using EFD as features

To use these as features, one can write a small wrapper function:

from pyefd import elliptic_fourier_descriptors

def efd_feature(contour):
    coeffs = elliptic_fourier_descriptors(contour, order=10, normalize=True)
    return coeffs.flatten()[3:]

If the coefficients are normalized, then coeffs[0, 0] = 1.0, coeffs[0, 1] = 0.0 and coeffs[0, 2] = 0.0, so they can be disregarded when using the elliptic Fourier descriptors as features.

See [1] for more technical details.

Testing

Run tests with with Pytest:

py.test tests.py

The tests include a single image from the MNIST dataset of handwritten digits ([2]) as a contour to use for testing.

Documentation

See ReadTheDocs.

References

[1]: Frank P Kuhl, Charles R Giardina, Elliptic Fourier features of a closed contour, Computer Graphics and Image Processing, Volume 18, Issue 3, 1982, Pages 236-258, ISSN 0146-664X, http://dx.doi.org/10.1016/0146-664X(82)90034-X.

[2]: LeCun et al. (1999): The MNIST Dataset Of Handwritten Digits

Comments
  • Vectorized contour reconstruction function

    Vectorized contour reconstruction function

    Hope to contribute some more to this project with an extracted contour reconstruction function. Refactored tests accordingly. To compare reconstructed shapes I had to import a reliable hausdorff distance function, for which the scipy package was included in the test requirements.

    opened by reinvantveer 4
  • fix x/y swapping and add demo

    fix x/y swapping and add demo

    Hi,

    I noticed that in some places apparently the x/y dimension was mixed up and I attempted to fix this. As a test and demo, I added a few geometric figures to showcase this method.

    Best regards, Jonathan

    enhancement 
    opened by jonathanschilling 3
  • Method not robust to random index ?

    Method not robust to random index ?

    Hello,

    I wanted to test your method, I do not really know how does it works but it seems that how the point are indexed have some importance as I get strange result when the array is indexed differently ... Is there a way to resolve this ?

    Find below illustration of what I mean

    normal result when points are correctly ordered image

    abnormal result when points are randomly ordered image

    opened by julienguegan 3
  • Bad reconstruction results

    Bad reconstruction results

    Hi, now I'm writing the code that reconstructs the image from eft coefficienct @hbldh

    img_1 = np.array(
        [
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                191,
                64,
                127,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                0,
                0,
                0,
                127,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                64,
                0,
                0,
                0,
                0,
                64,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                191,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                64,
                127,
                64,
                64,
                0,
                0,
                64,
                191,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                191,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                127,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                64,
                0,
                0,
                127,
                255,
                255,
                191,
                64,
                0,
                0,
                0,
                0,
                0,
                64,
                127,
                127,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                191,
                0,
                0,
                0,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                191,
                0,
                0,
                0,
                64,
                127,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                64,
                0,
                0,
                0,
                0,
                0,
                64,
                191,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                127,
                64,
                0,
                0,
                0,
                0,
                64,
                191,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                191,
                127,
                0,
                0,
                0,
                0,
                127,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                191,
                127,
                0,
                0,
                0,
                64,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                0,
                0,
                0,
                191,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                127,
                0,
                0,
                127,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                127,
                0,
                0,
                127,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                127,
                191,
                255,
                255,
                255,
                255,
                127,
                0,
                0,
                0,
                191,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                127,
                0,
                127,
                255,
                255,
                191,
                64,
                0,
                0,
                0,
                191,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                191,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                127,
                0,
                0,
                0,
                0,
                0,
                0,
                64,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                127,
                0,
                0,
                0,
                64,
                191,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
        ]
    )
    
    img_1 = np.uint8(img_1)
    edges = cv2.Canny(img_1,100,200)
    contour_2 = []
    
    for i in range(edges.shape[0]):
        for j in range(edges.shape[1]):
            if edges[i,j] == 255:
              contour_2.append([i,j])
    contour_2 = np.array(contour_2)
    
    cv2.imwrite('test1.png',img_1)
    
    coeffs = pyefd.elliptic_fourier_descriptors(contour_2, order=10, normalize=False)
    
    contour_2 = pyefd.reconstruct_contour(coeffs, locus=(0, 0), num_points=300)
    
    for i in range(contour_1.shape[0]):
        tmp[int(round(contour_1[i][0]))][int(round(contour_1[i][1]))] = 255
    print(tmp.shape)
    cv2.imwrite('test2.png',tmp)
    

    However, the result is not the supposed one. How can I fix my code to reconstruct the correct image?

    test1, reconstruction of img_1(test1.png) test2, reconstruction of edge test3, reconstruction from coeffs, (test2.png)

    opened by MADONOKOUKI 2
  • Error: operands could not be broadcast together with shapes (0,1,2) (10,0)

    Error: operands could not be broadcast together with shapes (0,1,2) (10,0)

    Hi, I am sending my contour sequence to your function to define properties using the opencv example in your readme file, but I get the following error. What is the reason?

    My code:

    import cv2 
    import numpy as np
    from pyefd import elliptic_fourier_descriptors
    
    def auto_canny(image, sigma=0.33):
    	# compute the median of the single channel pixel intensities
    	v = np.median(image)
    	# apply automatic Canny edge detection using the computed median
    	lower = int(max(0, (1.0 - sigma) * v))
    	upper = int(min(255, (1.0 + sigma) * v))
    	edged = cv2.Canny(image, lower, upper)
    	# return the edged image
    	return edged
    def efd_feature(contour):
        coeffs = elliptic_fourier_descriptors(contour, order=10, normalize=True)
        return coeffs.flatten()[3:]
    img = cv2.imread('C:/Users/Ogeday/image.jpg')
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    retval,th = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV +cv2.THRESH_OTSU)
    cv2.imshow("thresolded",th);
    
    canny=auto_canny(th);
    
    cv2.imshow("cannied",canny);
    # Find the contours of a binary image using OpenCV.
    contours, hierarchy = cv2.findContours(canny, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    
    # Iterate through all contours found and store each contour's 
    # elliptical Fourier descriptor's coefficients.
    coeffs = []
    for cnt in contours:
        # Find the coefficients of all contours
     coeffs.append(elliptic_fourier_descriptors(np.squeeze(cnt), order=10))
    
    efd=efd_feature(contours);
    print(efd);
    
    opened by OgedayOztekin 2
  • pyefd for 3D points

    pyefd for 3D points

    Hi!

    I wondered if I could use pyefd for generating the contour from 3D data points, where x, y, and z are the coordinates of a generic point. Do you have any suggestions?

    I really appreciate any help you can provide!

    opened by dalbenzioG 1
  • Feature request: normalize_efd function that also outputs angle and scale

    Feature request: normalize_efd function that also outputs angle and scale

    Thank you very much for this beautiful piece of software. For my purposes it would be great to also get the normalization angle and scale in order to store it alongside the descriptor for future lookups. Would it be possible to have a analogous function to normalize_efd that outputs those values and the normalized descriptor as a tuple?

    enhancement 
    opened by geloescht 1
  • Release/v1.5.0

    Release/v1.5.0

    Version 1.5.0

    Added

    • return_transformation keyword on elliptic_fourier_descriptors method. Merged #11. Fixes #5.

    Fixes

    • Documentation correction. Merged #12.
    opened by hbldh 0
  • Create Dependabot config file

    Create Dependabot config file

    :wave: Dependabot is moving natively into GitHub! This pull request migrates your configuration from Dependabot.com to a config file, using the new syntax. When you merge this pull request, we'll swap out dependabot-preview (me) for a new dependabot app, and you'll be all set!

    With this change, you'll now use the Dependabot page in GitHub, rather than the Dependabot dashboard, to monitor your version updates. Dependabot is now configured exclusively using config files.

    If you've got any questions or feedback for us, please let us know by creating an issue in the dependabot/dependabot-core repository.

    Learn more about the relaunch of Dependabot

    Please note that regular @dependabot commands do not work on this pull request.

    :robot::yellow_heart:

    dependencies 
    opened by dependabot-preview[bot] 0
  • Dependabot couldn't authenticate with https://pypi.python.org/simple/

    Dependabot couldn't authenticate with https://pypi.python.org/simple/

    Dependabot couldn't authenticate with https://pypi.python.org/simple/.

    You can provide authentication details in your Dependabot dashboard by clicking into the account menu (in the top right) and selecting 'Config variables'.

    View the update logs.

    opened by dependabot-preview[bot] 0
  • Dependabot can't resolve your Python dependency files

    Dependabot can't resolve your Python dependency files

    Dependabot can't resolve your Python dependency files.

    As a result, Dependabot couldn't update your dependencies.

    The error Dependabot encountered was:

    ERROR: ERROR: Could not find a version that matches black
    Skipped pre-versions: 18.3a0, 18.3a0, 18.3a1, 18.3a1, 18.3a2, 18.3a2, 18.3a3, 18.3a3, 18.3a4, 18.3a4, 18.4a0, 18.4a0, 18.4a1, 18.4a1, 18.4a2, 18.4a2, 18.4a3, 18.4a3, 18.4a4, 18.4a4, 18.5b0, 18.5b0, 18.5b1, 18.5b1, 18.6b0, 18.6b0, 18.6b1, 18.6b1, 18.6b2, 18.6b2, 18.6b3, 18.6b3, 18.6b4, 18.6b4, 18.9b0, 18.9b0, 19.3b0, 19.3b0
    There are incompatible versions in the resolved dependencies.
    [pipenv.exceptions.ResolutionFailure]:       req_dir=requirements_dir
    [pipenv.exceptions.ResolutionFailure]:   File "/usr/local/.pyenv/versions/3.7.3/lib/python3.7/site-packages/pipenv/utils.py", line 726, in resolve_deps
    [pipenv.exceptions.ResolutionFailure]:       req_dir=req_dir,
    [pipenv.exceptions.ResolutionFailure]:   File "/usr/local/.pyenv/versions/3.7.3/lib/python3.7/site-packages/pipenv/utils.py", line 480, in actually_resolve_deps
    [pipenv.exceptions.ResolutionFailure]:       resolved_tree = resolver.resolve()
    [pipenv.exceptions.ResolutionFailure]:   File "/usr/local/.pyenv/versions/3.7.3/lib/python3.7/site-packages/pipenv/utils.py", line 395, in resolve
    [pipenv.exceptions.ResolutionFailure]:       raise ResolutionFailure(message=str(e))
    [pipenv.exceptions.ResolutionFailure]:       pipenv.exceptions.ResolutionFailure: ERROR: ERROR: Could not find a version that matches black
    [pipenv.exceptions.ResolutionFailure]:       Skipped pre-versions: 18.3a0, 18.3a0, 18.3a1, 18.3a1, 18.3a2, 18.3a2, 18.3a3, 18.3a3, 18.3a4, 18.3a4, 18.4a0, 18.4a0, 18.4a1, 18.4a1, 18.4a2, 18.4a2, 18.4a3, 18.4a3, 18.4a4, 18.4a4, 18.5b0, 18.5b0, 18.5b1, 18.5b1, 18.6b0, 18.6b0, 18.6b1, 18.6b1, 18.6b2, 18.6b2, 18.6b3, 18.6b3, 18.6b4, 18.6b4, 18.9b0, 18.9b0, 19.3b0, 19.3b0
    [pipenv.exceptions.ResolutionFailure]: Warning: Your dependencies could not be resolved. You likely have a mismatch in your sub-dependencies.
      First try clearing your dependency cache with $ pipenv lock --clear, then try the original command again.
     Alternatively, you can use $ pipenv install --skip-lock to bypass this mechanism, then run $ pipenv graph to inspect the situation.
      Hint: try $ pipenv lock --pre if it is a pre-release dependency.
    ERROR: ERROR: Could not find a version that matches black
    Skipped pre-versions: 18.3a0, 18.3a0, 18.3a1, 18.3a1, 18.3a2, 18.3a2, 18.3a3, 18.3a3, 18.3a4, 18.3a4, 18.4a0, 18.4a0, 18.4a1, 18.4a1, 18.4a2, 18.4a2, 18.4a3, 18.4a3, 18.4a4, 18.4a4, 18.5b0, 18.5b0, 18.5b1, 18.5b1, 18.6b0, 18.6b0, 18.6b1, 18.6b1, 18.6b2, 18.6b2, 18.6b3, 18.6b3, 18.6b4, 18.6b4, 18.9b0, 18.9b0, 19.3b0, 19.3b0
    There are incompatible versions in the resolved dependencies.
    
    ['Traceback (most recent call last):\n', '  File "/usr/local/.pyenv/versions/3.7.3/lib/python3.7/site-packages/pipenv/utils.py", line 501, in create_spinner\n    yield sp\n', '  File "/usr/local/.pyenv/versions/3.7.3/lib/python3.7/site-packages/pipenv/utils.py", line 649, in venv_resolve_deps\n    c = resolve(cmd, sp)\n', '  File "/usr/local/.pyenv/versions/3.7.3/lib/python3.7/site-packages/pipenv/utils.py", line 539, in resolve\n    sys.exit(c.return_code)\n', 'SystemExit: 1\n']
    

    If you think the above is an error on Dependabot's side please don't hesitate to get in touch - we'll do whatever we can to fix it.

    You can mention @dependabot in the comments below to contact the Dependabot team.

    opened by dependabot-preview[bot] 0
  • Contour chain approximation

    Contour chain approximation "simple" is buggy or numerically instable

    Description

    I was running Fourier descriptors extraction on contours that naturally contain long straight lines. I used cv.CHAIN_APPROX_SIMPLE as usual but was having weird results as if the method does not converge:

    image

    I tried storing the contour as cv.CHAIN_APPROX_NONE instead and it fixed the problem for all of my cases: image

    Minimal setup to reproduce:

    img = np.zeros((100,100), dtype=np.uint8)
    img = cv.rectangle(img, (25,25), (75,75), (255,255,255), -1)
    cnt, h = cv.findContours(img,cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
    coeffs = pyefd.elliptic_fourier_descriptors(cnt[0].reshape(-1,2), order=10, normalize=True)
    pyefd.plot_efd(coeffs)
    plt.show()
    
    img = np.zeros((100,100), dtype=np.uint8)
    img = cv.rectangle(img, (25,25), (75,75), (255,0,0), -1)
    cnt, h = cv.findContours(img,cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE)
    coeffs = pyefd.elliptic_fourier_descriptors(cnt[0].reshape(-1,2), order=10, normalize=True)
    pyefd.plot_efd(coeffs)
    plt.show()
    

    I get: image image

    opened by MikeTkachuk 0
  • RuntimeWarning: invalid value encountered in true_divide

    RuntimeWarning: invalid value encountered in true_divide

    Some specific contour leads to a warning and to NaN due to division by 0.

    from pyefd import elliptic_fourier_descriptors
    import numpy as np
    
    contour = np.array([(0.0007365261134166801, 0.0008592751780890362), (0.0011385481809349507, 0.0005073326831297464), (0.0016015060818268534, 0.00024058327913523136), (0.002107608603590938, 6.927799610623175e-05), (0.002637406510141327, 0.0), (0.003170539965043462, 3.5411605355473164e-05), (0.0036865209486098838, 0.00017415196403836042), (0.0036865209486098838, 0.00017415196403836042), (0.003301593851628093, 0.0011941724608851567), (0.003301593851628093, 0.0011941724608851567), (0.0029920052614881287, 0.001110928245675824), (0.002672125188546981, 0.0010896812824625624), (0.002354246444616681, 0.0011312480801257685), (0.002050584931558297, 0.0012340312499438122), (0.0017728101910231553, 0.001394080892339833), (0.001531596950512193, 0.0016052463893156954), (0.0013362148995842427, 0.001859412769243729), (0.0011941724608850457, 0.0021468125606828314), (0.001110928245675491, 0.0024564011508226846), (0.0010896812824621183, 0.0027762812237640544), (0.0011312480801258795, 0.003094159967693799), (0.001234031249943368, 0.0033978214807524054), (0.001394080892340055, 0.003675596221287547), (0.0016052463893154734, 0.003916809461798509), (0.00185941276924384, 0.004112191512726571), (0.0021468125606826094, 0.004254233951425768), (0.0017618854637007075, 0.005274254448272675), (0.0012828858113027586, 0.005037517050440643), (0.0008592751780888142, 0.0047118802988938), (0.0005073326831298575, 0.004309858231375752), (0.0002405832791353424, 0.003846900330483627), (6.927799610623175e-05, 0.0033407978087195422), (0.0, 0.0028109999021695975), (3.5411605355584186e-05, 0.0022778664472672405), (0.0001741519640382494, 0.0017618854637008186), (0.00041088936187017033, 0.0012828858113032027), (0.0007365261134166801, 0.0008592751780890362)])
    y = elliptic_fourier_descriptors(contour, order=3, normalize=False)
    print(y)
    

    will give the following output :

    [[nan nan nan nan] [nan nan nan nan] [nan nan nan nan]] /usr/local/lib/python3.7/dist-packages/pyefd.py:67: RuntimeWarning: invalid value encountered in true_divide a = consts * np.sum((dxy[:, 0] / dt) * d_cos_phi, axis=1) /usr/local/lib/python3.7/dist-packages/pyefd.py:68: RuntimeWarning: invalid value encountered in true_divide b = consts * np.sum((dxy[:, 0] / dt) * d_sin_phi, axis=1) /usr/local/lib/python3.7/dist-packages/pyefd.py:69: RuntimeWarning: invalid value encountered in true_divide c = consts * np.sum((dxy[:, 1] / dt) * d_cos_phi, axis=1) /usr/local/lib/python3.7/dist-packages/pyefd.py:70: RuntimeWarning: invalid value encountered in true_divide d = consts * np.sum((dxy[:, 1] / dt) * d_sin_phi, axis=1)


    Any idea how to fix this ?

    Or how to work-around this ?

    opened by ghost 3
  • Descriptors not consistent across cycled contour indices

    Descriptors not consistent across cycled contour indices

    Description

    I am trying to create invariant descriptors for the same silhouettes at different rotation angles.

    What I Did

    Created rotated copies of the same picture. Ran skimage.measure.find_contours() on it to extract a contour and pyefd.elliptic_fourier_descriptors(normalize=True) on the result. Expected output: Equal with some margin of error for differently rotated copies. Actual output: Result is only sometimes equal.

    Unfortunately my code is spread over several source files and depends on data, so I cannot easily share an example of what I am actually doing. But here is a function that, when inserted into tests.py will result in a failed test:

    def test_normalizing_4():
        contour_2 = np.roll(contour_1[:-1,:], 40, axis=0)
        contour_2 = np.append(contour_2, [contour_2[0]], axis=0)
        c1 = pyefd.elliptic_fourier_descriptors(contour_1, normalize=True)
        c2 = pyefd.elliptic_fourier_descriptors(contour_2, normalize=True)
        np.testing.assert_almost_equal(c1, c2, decimal=12)
    

    The reason for this behaviour is actually mentioned in the original paper in chapter 5.1 and figure 8: For every shape there are two possible classifications, each rotated along one of the two semi-major axes (rotated 180 degrees from each other). It seems like pyefd chooses one of them based on the location of the first point in the contour.

    There might be two solutions to this, firstly to return both classifications or to choose one of them (more) consistently by examining higher harmonic content of the descriptor. Note that the (near-)circular case also exists as outlined in the paper in chapter 5.2, so returning multiple descriptors and normalisation parametres might be required anyway for contours with rotational symmetry.

    bug enhancement help wanted 
    opened by geloescht 2
Releases(v1.6.0)
  • v1.6.0(Dec 9, 2021)

    Version 1.6.0 (2021-12-09)

    Added

    • Added a demo for 3D surfaces with cylindrical symmetries. (examples/example1.py)

    Fixes

    • Fixes incorrectly plotted curves when no imshow has been called.
    • Fixes ugly coefficient calculation code.
    Source code(tar.gz)
    Source code(zip)
  • v1.5.1(Jan 22, 2021)

    1.5.1 (2021-01-22)

    Added

    • return_transformation keyword on elliptic_fourier_descriptors method. Merged #11. Fixes #5.

    Fixes

    • Documentation correction. Merged #12.

    Removed

    • Removed example script which did not work anymore.
    Source code(tar.gz)
    Source code(zip)
  • v.1.5.1-2(Jan 22, 2021)

    1.5.1 (2021-01-22)

    Added

    • return_transformation keyword on elliptic_fourier_descriptors method. Merged #11. Fixes #5.

    Fixes

    • Documentation correction. Merged #12.

    Removed

    • Removed example script which did not work anymore.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.1(Sep 28, 2020)

  • v0.1.0(Feb 9, 2016)

Owner
Henrik Blidh
Mathematician, Python programmer and Pointless Projecteer.
Henrik Blidh
Source code for the NeurIPS 2021 paper "On the Second-order Convergence Properties of Random Search Methods"

Second-order Convergence Properties of Random Search Methods This repository the paper "On the Second-order Convergence Properties of Random Search Me

Adamos Solomou 0 Nov 13, 2021
SimpleDepthEstimation - An unified codebase for NN-based monocular depth estimation methods

SimpleDepthEstimation Introduction This is an unified codebase for NN-based monocular depth estimation methods, the framework is based on detectron2 (

8 Dec 13, 2022
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)

A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks) This repository contains a PyTorch implementation for the paper: Deep Pyra

Greg Dongyoon Han 262 Jan 03, 2023
[NeurIPS'21 Spotlight] PyTorch code for our paper "Aligned Structured Sparsity Learning for Efficient Image Super-Resolution"

ASSL This repository is for a new network pruning method (Aligned Structured Sparsity Learning, ASSL) for efficient single image super-resolution (SR)

Huan Wang 47 Nov 28, 2022
Send text to girlfriend in the morning

Girlfriend Text Send text to girlfriend (or really anyone with a phone number) in the morning 1. Configure your settings in utils.py. phone_number = "

Paras Adhikary 199 Oct 25, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023
TensorFlow, PyTorch and Numpy layers for generating Orthogonal Polynomials

OrthNet TensorFlow, PyTorch and Numpy layers for generating multi-dimensional Orthogonal Polynomials 1. Installation 2. Usage 3. Polynomials 4. Base C

Chuan 29 May 25, 2022
High-performance moving least squares material point method (MLS-MPM) solver.

High-Performance MLS-MPM Solver with Cutting and Coupling (CPIC) (MIT License) A Moving Least Squares Material Point Method with Displacement Disconti

Yuanming Hu 2.2k Dec 31, 2022
Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion Preface This directory provides an implementation of the algori

Jean-Samuel Leboeuf 0 Nov 03, 2021
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates

Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates Installation Clone the repository: git clone https://github.com/Zengyi-Qi

Zengyi Qin 3 Oct 18, 2022
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
Evaluating different engineering tricks that make RL work

Reinforcement Learning Tricks, Index This repository contains the code for the paper "Distilling Reinforcement Learning Tricks for Video Games". Short

Anssi 15 Dec 26, 2022
[ICCV21] Code for RetrievalFuse: Neural 3D Scene Reconstruction with a Database

RetrievalFuse Paper | Project Page | Video RetrievalFuse: Neural 3D Scene Reconstruction with a Database Yawar Siddiqui, Justus Thies, Fangchang Ma, Q

Yawar Nihal Siddiqui 75 Dec 22, 2022