Stacked Recurrent Hourglass Network for Stereo Matching

Related tags

Deep LearningSRHNet
Overview

SRH-Net: Stacked Recurrent Hourglass

Introduction

This repository is supplementary material of our RA-L submission, which helps reviewers to understand and evaluate the submitted paper. The final version will be released to the community in the future.

architect

For commercial purposes, please contact the authors: [email protected]. If you use PlanarSLAM in an academic work, please cite:

inproceedings{dusrhnet,
  author = {Hongzhi Du, Yanyan Li, Yanbiao Sun, Jigui Zhu and Federico Tombari},
  title = {SRH-Net: Stacked Recurrent Hourglass Network for Stereo Matching},
  year = {2021},
  booktitle = {arXiv preprint arXiv:2105.11587},
 }

Installation

We suggest to create an Anaconda environment and install the dependencies:

conda create -y -n SRHNET python=3.6
conda activate SRHNET
pip install -r requirements.txt

Evaluation on the public datasets

Please download the SceneFLow dataset: "FlyingThings3D", "Driving" and "Monkaa" (clean pass and disparity files).

  -mv all training images (totallty 29 folders) into ${your dataset PATH}/frames_cleanpass/TRAIN/
  -mv all corresponding disparity files (totallty 29 folders) into ${your dataset PATH}/disparity/TRAIN/
  -make sure the following 29 folders are included in the "${your dataset PATH}/disparity/TRAIN/" and "${your dataset PATH}/frames_cleanpass/TRAIN/":
    
    15mm_focallength	35mm_focallength		A			 a_rain_of_stones_x2		B				C
    eating_camera2_x2	eating_naked_camera2_x2		eating_x2		 family_x2			flower_storm_augmented0_x2	flower_storm_augmented1_x2
    flower_storm_x2	funnyworld_augmented0_x2	funnyworld_augmented1_x2	funnyworld_camera2_augmented0_x2	funnyworld_camera2_augmented1_x2	funnyworld_camera2_x2
    funnyworld_x2	lonetree_augmented0_x2		lonetree_augmented1_x2		lonetree_difftex2_x2		  lonetree_difftex_x2		lonetree_winter_x2
    lonetree_x2		top_view_x2			treeflight_augmented0_x2	treeflight_augmented1_x2  	treeflight_x2	

download and extract kitti and kitti2015 datasets.

Evaluation and Prediction

Revise parameter settings and run "myevalution.sh" and "predict.sh" for evaluation and prediction on the SceneFLow dataset and KITTI datasets. Note that the “crop_width” and “crop_height” must be multiple of 16, "max_disp" must be multiple of 4 (default: 192).


Test on your own stereo images

The repo provides the pretrained model for testing. Please extract the .zip file into SRHNet Folder and use the following command to test your stereo images.

python test_img.py --crop_height= image height\
                   --crop_width= image width\
                   --max_disp=192\
                   --leftimg='path/to/left/image'\
                   --rightimg='path/to/left/image'\
                   --resume='path/to/pretrained/model'

As an example, we also provide stereo images that can be tested by using the following command,

python test_img.py --crop_height=384\
                   --crop_width=1248\
                   --max_disp=192\
                   --leftimg='./demo/left12_10.png'\
                   --rightimg='./demo/right12_10.png'\
                   --resume='./finetune2_kitti2015_epoch_8.pth'
The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

FOREC: A Cross-Market Recommendation System This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recomme

Hamed Bonab 16 Sep 12, 2022
Keqing Chatbot With Python

KeqingChatbot A public running instance can be found on telegram as @keqingchat_bot. Requirements Python 3.8 or higher. A bot token. Local Deploy git

Rikka-Chan 2 Jan 16, 2022
Mscp jamf - Build compliance in jamf

mscp_jamf Build compliance in Jamf. This will build the following xml pieces to

Bob Gendler 3 Jul 25, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions

gtfs2vec This is a companion repository for a gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions publication. Vis

Politechnika Wrocławska - repozytorium dla informatyków 5 Oct 10, 2022
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
Text-to-Image generation

Generate vivid Images for Any (Chinese) text CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain. Read our p

THUDM 1.3k Dec 29, 2022
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O

Denys Rozumnyi 139 Dec 26, 2022
[ICME 2021 Oral] CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning This repository is the official PyTorch implementation of CORE-Text, a

Jingyang Lin 18 Aug 11, 2022
Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

CrossTeaching-SSOD 0. Introduction Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection" This repo include

Bruno Ma 9 Nov 29, 2022
This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution Network.

Lite-HRNet: A Lightweight High-Resolution Network Introduction This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution

HRNet 675 Dec 25, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm

Kentaro Wada 1.6k Jan 07, 2023
[ICML 2021] "Graph Contrastive Learning Automated" by Yuning You, Tianlong Chen, Yang Shen, Zhangyang Wang

Graph Contrastive Learning Automated PyTorch implementation for Graph Contrastive Learning Automated [talk] [poster] [appendix] Yuning You, Tianlong C

Shen Lab at Texas A&M University 80 Nov 23, 2022
Sequential GCN for Active Learning

Sequential GCN for Active Learning Please cite if using the code: Link to paper. Requirements: python 3.6+ torch 1.0+ pip libraries: tqdm, sklearn, sc

45 Dec 26, 2022
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
Registration Loss Learning for Deep Probabilistic Point Set Registration

RLLReg This repository contains a Pytorch implementation of the point set registration method RLLReg. Details about the method can be found in the 3DV

Felix Järemo Lawin 35 Nov 02, 2022