Text-to-Image generation

Overview

Generate vivid Images for Any (Chinese) text

teaser

CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain.

  • Read our paper CogView: Mastering Text-to-Image Generation via Transformers on ArXiv for a formal introduction. The PB-relax and Sandwich-LN can also help you train large and deep transformers stably (e.g. eliminating NaN losses).
  • Visit our demo at Github Page or Wudao! (Without post-selection or super-resolution, currently only supports simplified Chinese input, but one can translate text from other languages into Chinese for input. Note: Wudao provides faster access for users from China mainland.)
  • Download our pretrained models from Project Wudao-Wenhui(悟道-文汇).
  • Cite our paper if you find our work is helpful~
@article{ding2021cogview,
  title={CogView: Mastering Text-to-Image Generation via Transformers},
  author={Ding, Ming and Yang, Zhuoyi and Hong, Wenyi and Zheng, Wendi and Zhou, Chang and Yin, Da and Lin, Junyang and Zou, Xu and Shao, Zhou and Yang, Hongxia and Tang, Jie},
  journal={arXiv preprint arXiv:2105.13290},
  year={2021}
  • Google Colab Two contributors successfully setup up CogView on Colab Links to Colab!

Getting Started

Setup

  • Hardware: Linux servers with Nvidia V100s or A100s are recommended, but it is also okay to run the pretrained models with smaller --max-inference-batch-size or training smaller models on less powerful GPUs.

  • Environment (Option 1): Please first install PyTorch (>=1.7.0) and apex, and then install other dependencies via pip install -r requirements.txt.

  • Environment (Option 2): We prepare a docker image in case that you fail to handle the environments. Pull the image, create a (background) container and get into it via:

    docker pull cogview/cuda111_torch181_deepspeed040
    ./env/start_docker.sh && docker exec -it bg-cogview bash
    
    cd /root/cogview # in the container
    

Download

  1. Download the image tokenizer vqvae_hard_biggerset_011.pt from BAAI website or Tsinghua Cloud. Place the file under pretrained/vqvae.
wget https://cloud.tsinghua.edu.cn/f/71607a5dca69417baa8c/?dl=1 -O pretrained/vqvae/vqvae_hard_biggerset_011.pt
  1. Download models from Project Wudao-Wenhui.

    FileName Discription
    cogview-base.tar The pretrained text-to-image model.
    cogview-caption.tar Finetuned image-to-text model, also used for reranking.
    cogview-sr.tar Finetuned super-resolution model. (warning: it runs slow.)

    Uncompress them into pretrained/cogview/. The following command should be modified based on the model name.

    tar -xvf cogview-{base, sr, caption}.tar -C pretrained/cogview/
    
  2. (Only for training tutorial, skip it for inference.) Download a small "bird-and-animal" example dataset from our link at Tsinghua Cloud.

wget https://cloud.tsinghua.edu.cn/f/1e4963ec8ac84941ba68/?dl=1 -O data/bird_animal.bin

Run CogView! (Model Inference)

We encapsulate the generation functions into scripts. See generate_samples.py and arguments.py for details.

Text-to-Image Generation

Write text queries (one per line) into input.txt and run:

./scripts/text2image.sh --debug

The results will in a new folder samples_text2image/.

Arguments useful in inference are mainly:

  • --input-source [path or "interactive"]. The path of the input file, can also be "interactive", which will launch a CLI.
  • --output-path [path]. The folder containing the results.
  • --batch-size [int]. The number of samples will be generated per query.
  • --max-inference-batch-size [int]. Maximum batch size per forward. Reduce it if OOM.
  • --debug. Only save concatenated images for all generated samples, and name them by input text and date.
  • --with-id. When it toggled, you must specify an "id" before each input, e.g. 001\t一个漂亮的女孩, \t denoting TAB (NOT space). It will generate batch-size split images in a folder named "id" for each input. Confict with --debug.
  • --device [int]. Running on which GPU.

Super-resolution

Run the following script and input text\t{image_path}, where {image_path} means the path of a previously generated image.

./scripts/super_resolution.sh

Note: It is only effective for generated images from our Image Tokenizer (due to the token distribution).

Image-to-Text

The input is "one image path per line", and will print the results to stdout.

./scripts/image2text.sh

Note: Not optimized for this task, so it might not very competitive (but okay). We will consider to release a version funetuning for a longer period on this task in the future. (TODO)

Post-selection

This application only takes file inputs, where each line is {text}\t{image_path1}\t{image_path2}\t{image_path3}.... The output is {output_path}/scores.txt, a line of a list of scores, following a line from inputs.

./scripts/post_selection.sh

Note: In the released codes, for simplicity, we did not expose the raw API , which supports some advanced generation modes, e.g. text and part of image.

Training

Here we use a subset of our dataset from bird-and-animal for tutorial. The binary dataset is generated by our cogdata toolkit. Please wait for a formal release with tutorials of cogdata (although it is available now).

Single Node

After downloading the dataset, directly run

./scripts/pretrain_single_node.sh

Multiple Nodes

If you want to train the models on multiple servers inter-connected by infiniband without a shared file system (you may need pdsh to accelerate this process):

  1. On each server, use git clone to download this repo, and make sure the data (LMDB format) are moved into the data subfolder.
  2. On each server, echo "ip1 ip2 <other IPs>" > ./docker/ip_list.txt, and then start the docker by ./env/start_docker.sh.
  3. Get into the docker on the first node container via docker exec -it bg-cogview bash.
  4. Get into /root/cogview and run ./scripts/pretrain_multiple_nodes.sh. You may need to change the config (especially OPTIONS_NCCL) in the shell script.

See the arguments.py for advanced functions for training. TODO

Gallery

more_samples

Owner
THUDM
Data Mining Research Group at Tsinghua University
THUDM
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
Files for a tutorial to train SegNet for road scenes using the CamVid dataset

SegNet and Bayesian SegNet Tutorial This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian Seg

Alex Kendall 800 Dec 31, 2022
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Seokeon Choi 35 Oct 26, 2022
End-to-end speech secognition toolkit

End-to-end speech secognition toolkit This is an E2E ASR toolkit modified from Espnet1 (version 0.9.9). This is the official implementation of paper:

Jinchuan Tian 147 Dec 28, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Using LSTM write Tang poetry

本教程将通过一个示例对LSTM进行介绍。通过搭建训练LSTM网络,我们将训练一个模型来生成唐诗。本文将对该实现进行详尽的解释,并阐明此模型的工作方式和原因。并不需要过多专业知识,但是可能需要新手花一些时间来理解的模型训练的实际情况。为了节省时间,请尽量选择GPU进行训练。

56 Dec 15, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022
Calibrated Hyperspectral Image Reconstruction via Graph-based Self-Tuning Network.

mask-uncertainty-in-HSI This repository contains the testing code and pre-trained models for the paper Calibrated Hyperspectral Image Reconstruction v

JIAMIAN WANG 9 Dec 29, 2022
Pytorch Implementation of "Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation"

CRL_EGPG Pytorch Implementation of Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation We use contrastive loss implemented b

YHR 25 Nov 14, 2022
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.

An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear

Simon Blanke 422 Jan 04, 2023
nfelo: a power ranking, prediction, and betting model for the NFL

nfelo nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence t

6 Nov 22, 2022
[AAAI-2021] Visual Boundary Knowledge Translation for Foreground Segmentation

Trans-Net Code for (Visual Boundary Knowledge Translation for Foreground Segmentation, AAAI2021). [https://ojs.aaai.org/index.php/AAAI/article/view/16

ZJU-VIPA 2 Mar 04, 2022
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Multi-Glimpse Network: A Robust and Efficient Classification Architecture based on Recurrent Downsampled Attention arXiv Require

9 May 10, 2022
CVPR 2020 oral paper: Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax.

Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax ⚠️ Latest: Current repo is a complete version. But we delet

FishYuLi 341 Dec 23, 2022
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
Deep Two-View Structure-from-Motion Revisited

Deep Two-View Structure-from-Motion Revisited This repository provides the code for our CVPR 2021 paper Deep Two-View Structure-from-Motion Revisited.

Jianyuan Wang 145 Jan 06, 2023