constructing maps of intellectual influence from publication data

Overview

Influencemap Project @ ANU

Influence in the academic communities has been an area of interest for researchers. This can be seen in the popularity of applications like google scholar and the various metrics created for ranking papers, authors, conferences, etc.

We aim to provide a visualisation tool which allows users to easily search and visualise the flow of academic influence. Our visualisation maps influence in the form of an influence flower. We calculate influence as a function of the number of citations between two entities (look below for information on our definition of influence).

The node in the centre of the flower denotes the ego entity, the entitiy in which we are looking at influence with respect to. The leaf nodes are the most influential entities with respect to the ego. (We define the ego as a collection of papers. If it is an author, it is the collection of papers that the author has authored)

Each of the edges of the graph signifies the flow of influence to and from the ego node, the strength of this relation is reflected in the thickness of the edge. The red edges denote the influence the ego has towards the outer entities (an outer entity citing a paper by the ego). The blue edges denote the influence the outer entities have towards the ego (the ego cites a paper by one of the outer entities).

The colour of the outer nodes signifies the ratio of influence in and out. A blue node indicates that the associated entity has influenced the ego more than the ego has influenced itself. Likewise, a red node indicates the ego has influenced the node's entity more than it has influenced the ego.

We define two entities to be coauthors if the entities have contributed to the same paper. Coauthors of the ego are signified by nodes with greyed out names.

Data

We use the microsoft academic graph (MAG) dataset for our visualisation. The dataset is a large curation of publication indexed by Bing. From MAG, we use the following fields of the paper entries in the dataset,

  • Citation links
  • Authors
  • Conferences
  • Journals
  • Author Affiliations

Influence

To quantify academic influence, we define influence as a function of paper citations. Each citation which the ego is apart of contributes to the overall influence map of an ego. To prevent papers with a large number of entities contributing from creating an overwhelming amount of influence, we normalise the influence contribution by the number of entities in the cited paper.

For example, consider the following four paper database where we only consider entities which are authors.

Name Paper no. authors cites papers
John Smith Algorithms 2 [Linear Algebra]
John Smith Machine Learning 3 [Linear Algebra, Computation]
Maria Garcia Linear Algebra 2 None
Maria Garcia Computation 4 [Algorithms]

In this case John's influence on Maria is 0.5 (John's paper Algorithm's has a weight of 0.5 and was cited once by Maria).

On the other hand Maria's influence on John is 1.25 (Linear Algebra has a weight of 0.5 and it was cited twice by John, Computation has a weight of 0.25 and was cited once by John).

We aggregate the pairwise influence of entities associated with the papers of the ego to generate the nodes of a flower. Each flowers' outer nodes can be a collection of several types of entities. In our influence flower application, we present 4 different flower types:

  1. Author outer nodes
  2. Venue (conferences or journals) outer nodes
  3. Author Affiliation outer nodes
  4. Paper topic outer nodes

Filtering self-citations

We define a self-citation between papers and a cited paper as a relation dependent on the ego. A paper citation is a self-citation if both papers have the ego as an author (a venue, an institution, or a topic).

Filtering co-contributors

The Influence Flower is able to capture less obvious influence outside of one’s co-author networks with the filtering. We define two entities to be co-contributors if the entities have contributed to the same paper. For the venue type entity, co-contribution indicates if the ego has published a paper to the venue. For the topic type entity, it means that the ego has written a paper of the topic. Co-contributors of the ego are indicated by nodes with greyed out names.

Other candidate definitions of influence

We have described influence as the sum of citations from one person (or venue or affiliation) to another, weighted by the number of authors in the cited paper. Similar methods were considered early on in the project which included combinations of different weighting schemes. We looked at the eight combinations of three mutually exclusive weightings:

  1. Weighting by the number of authors on the citing paper;
  2. Weighting by the number of authors on the cited paper; and
  3. Weighting by the number of papers referenced by the citing paper.

Due to the lack of a ground truth value of influence to compare these definitions to, we evaluated the eight combinations of these weightings empirically by discussing with researchers which of the definitions produced flowers that most accurately reflected their opinions of who they have influenced and been influenced by.

Other definitions of influence which have not yet been explored with this data include existing measures for node centrality in graphs. By using citation data from MAG to define a directed graph where nodes represent authors, venues or affiliations, and edges are derived from citations between nodes, we could explore using metrics such as closeness, betweenness and eigenvector centrality. These metrics are more appropriate for defining the influence of an entity relative to the whole network.

Owner
CS Metrics
CS Metrics
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim

Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University 108 Dec 29, 2022
Contrastively Disentangled Sequential Variational Audoencoder

Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d

Junwen Bai 35 Dec 24, 2022
Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

Wang Yijun 109 Nov 29, 2022
Julia package for multiway (inverse) covariance estimation.

TensorGraphicalModels TensorGraphicalModels.jl is a suite of Julia tools for estimating high-dimensional multiway (tensor-variate) covariance and inve

Wayne Wang 3 Sep 23, 2022
💊 A 3D Generative Model for Structure-Based Drug Design (NeurIPS 2021)

A 3D Generative Model for Structure-Based Drug Design Coming soon... Citation @inproceedings{luo2021sbdd, title={A 3D Generative Model for Structu

Shitong Luo 118 Jan 05, 2023
The official codes for the ICCV2021 Oral presentation "Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework"

P2PNet (ICCV2021 Oral Presentation) This repository contains codes for the official implementation in PyTorch of P2PNet as described in Rethinking Cou

Tencent YouTu Research 208 Dec 26, 2022
Contrastive Learning for Metagenomic Binning

CLMB A simple framework for CLMB - a novel deep Contrastive Learningfor Metagenomic Binning Created by Pengfei Zhang, senior of Department of Computer

1 Sep 14, 2022
Predict halo masses from simulations via graph neural networks

HaloGraphNet Predict halo masses from simulations via Graph Neural Networks. Given a dark matter halo and its galaxies, creates a graph with informati

Pablo Villanueva Domingo 20 Nov 15, 2022
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
Stitch it in Time: GAN-Based Facial Editing of Real Videos

STIT - Stitch it in Time [Project Page] Stitch it in Time: GAN-Based Facial Edit

1.1k Jan 04, 2023
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
Pytorch code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral)

DPFM Code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral) Installation This implementation runs on python = 3.7, use pip to install depend

Souhaib Attaiki 29 Oct 03, 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a-Service". Being busy recently, the code in this repo and this tutoria

Tianxiang Sun 149 Jan 04, 2023
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
End-to-end Temporal Action Detection with Transformer. [Under review]

TadTR: End-to-end Temporal Action Detection with Transformer By Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Song Bai, Xiang Bai. This repo holds the c

Xiaolong Liu 105 Dec 25, 2022