constructing maps of intellectual influence from publication data

Overview

Influencemap Project @ ANU

Influence in the academic communities has been an area of interest for researchers. This can be seen in the popularity of applications like google scholar and the various metrics created for ranking papers, authors, conferences, etc.

We aim to provide a visualisation tool which allows users to easily search and visualise the flow of academic influence. Our visualisation maps influence in the form of an influence flower. We calculate influence as a function of the number of citations between two entities (look below for information on our definition of influence).

The node in the centre of the flower denotes the ego entity, the entitiy in which we are looking at influence with respect to. The leaf nodes are the most influential entities with respect to the ego. (We define the ego as a collection of papers. If it is an author, it is the collection of papers that the author has authored)

Each of the edges of the graph signifies the flow of influence to and from the ego node, the strength of this relation is reflected in the thickness of the edge. The red edges denote the influence the ego has towards the outer entities (an outer entity citing a paper by the ego). The blue edges denote the influence the outer entities have towards the ego (the ego cites a paper by one of the outer entities).

The colour of the outer nodes signifies the ratio of influence in and out. A blue node indicates that the associated entity has influenced the ego more than the ego has influenced itself. Likewise, a red node indicates the ego has influenced the node's entity more than it has influenced the ego.

We define two entities to be coauthors if the entities have contributed to the same paper. Coauthors of the ego are signified by nodes with greyed out names.

Data

We use the microsoft academic graph (MAG) dataset for our visualisation. The dataset is a large curation of publication indexed by Bing. From MAG, we use the following fields of the paper entries in the dataset,

  • Citation links
  • Authors
  • Conferences
  • Journals
  • Author Affiliations

Influence

To quantify academic influence, we define influence as a function of paper citations. Each citation which the ego is apart of contributes to the overall influence map of an ego. To prevent papers with a large number of entities contributing from creating an overwhelming amount of influence, we normalise the influence contribution by the number of entities in the cited paper.

For example, consider the following four paper database where we only consider entities which are authors.

Name Paper no. authors cites papers
John Smith Algorithms 2 [Linear Algebra]
John Smith Machine Learning 3 [Linear Algebra, Computation]
Maria Garcia Linear Algebra 2 None
Maria Garcia Computation 4 [Algorithms]

In this case John's influence on Maria is 0.5 (John's paper Algorithm's has a weight of 0.5 and was cited once by Maria).

On the other hand Maria's influence on John is 1.25 (Linear Algebra has a weight of 0.5 and it was cited twice by John, Computation has a weight of 0.25 and was cited once by John).

We aggregate the pairwise influence of entities associated with the papers of the ego to generate the nodes of a flower. Each flowers' outer nodes can be a collection of several types of entities. In our influence flower application, we present 4 different flower types:

  1. Author outer nodes
  2. Venue (conferences or journals) outer nodes
  3. Author Affiliation outer nodes
  4. Paper topic outer nodes

Filtering self-citations

We define a self-citation between papers and a cited paper as a relation dependent on the ego. A paper citation is a self-citation if both papers have the ego as an author (a venue, an institution, or a topic).

Filtering co-contributors

The Influence Flower is able to capture less obvious influence outside of one’s co-author networks with the filtering. We define two entities to be co-contributors if the entities have contributed to the same paper. For the venue type entity, co-contribution indicates if the ego has published a paper to the venue. For the topic type entity, it means that the ego has written a paper of the topic. Co-contributors of the ego are indicated by nodes with greyed out names.

Other candidate definitions of influence

We have described influence as the sum of citations from one person (or venue or affiliation) to another, weighted by the number of authors in the cited paper. Similar methods were considered early on in the project which included combinations of different weighting schemes. We looked at the eight combinations of three mutually exclusive weightings:

  1. Weighting by the number of authors on the citing paper;
  2. Weighting by the number of authors on the cited paper; and
  3. Weighting by the number of papers referenced by the citing paper.

Due to the lack of a ground truth value of influence to compare these definitions to, we evaluated the eight combinations of these weightings empirically by discussing with researchers which of the definitions produced flowers that most accurately reflected their opinions of who they have influenced and been influenced by.

Other definitions of influence which have not yet been explored with this data include existing measures for node centrality in graphs. By using citation data from MAG to define a directed graph where nodes represent authors, venues or affiliations, and edges are derived from citations between nodes, we could explore using metrics such as closeness, betweenness and eigenvector centrality. These metrics are more appropriate for defining the influence of an entity relative to the whole network.

Owner
CS Metrics
CS Metrics
Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years. Please ref

35 Nov 10, 2022
Jax/Flax implementation of Variational-DiffWave.

jax-variational-diffwave Jax/Flax implementation of Variational-DiffWave. (Zhifeng Kong et al., 2020, Diederik P. Kingma et al., 2021.) DiffWave with

YoungJoong Kim 37 Dec 16, 2022
A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series.

TimeMatch Official source code of TimeMatch: Unsupervised Cross-region Adaptation by Temporal Shift Estimation by Joachim Nyborg, Charlotte Pelletier,

Joachim Nyborg 17 Nov 01, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

High-Performance Brain-to-Text Communication via Handwriting Overview This repo is associated with this manuscript, preprint and dataset. The code can

Francis R. Willett 306 Jan 03, 2023
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach

Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach This is the implementation of traffic prediction code in DTMP based on PyTo

chenxin 1 Dec 19, 2021
Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project

Semantic Code Search Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project. The model

Chen Wu 24 Nov 29, 2022
Official codebase for Pretrained Transformers as Universal Computation Engines.

universal-computation Overview Official codebase for Pretrained Transformers as Universal Computation Engines. Contains demo notebook and scripts to r

Kevin Lu 210 Dec 28, 2022
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization

Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi

Rakuten Group, Inc. 0 Nov 19, 2021
Code for ICLR 2020 paper "VL-BERT: Pre-training of Generic Visual-Linguistic Representations".

VL-BERT By Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai. This repository is an official implementation of the paper VL-BERT:

Weijie Su 698 Dec 18, 2022
Code for MSc Quantitative Finance Dissertation

MSc Dissertation Code ReadMe Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks Curtis Nybo MSc Quantitative F

2 Dec 01, 2022
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
Anagram Generator in Python

Anagrams Generator This is a program for computing multiword anagrams. It makes no effort to come up with sentences that make sense; it only finds ana

Day Fundora 5 Nov 17, 2022
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
MAT: Mask-Aware Transformer for Large Hole Image Inpainting

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral) Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia [Paper] News This

254 Dec 29, 2022
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-dri

Neural Magic 1.5k Dec 30, 2022
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction

DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction This is the implementation of DeepSTD in

5 Sep 26, 2022