This is a Deep Leaning API for classifying emotions from human face and human audios.

Overview

Emotion AI

This is a Deep Leaning API for classifying emotions from human face and human audios.

alt

Starting the server

To start the server first you need to install all the packages used by running the following command:

pip install -r requirements.txt
# make sure your current directory is "server"

After that you can start the server by running the following commands:

  1. change the directory from server to api:
cd api
  1. run the app.py
python app.py

The server will start at a default PORT of 3001 which you can configure in the api/app.py on the Config class:

class AppConfig:
    PORT = 3001
    DEBUG = False

If everything went well you will be able to make api request to the server.

EmotionAI

Consist of two parallel models that are trained with different model architectures to save different task. The one is for audio classification and the other is for facial emotion classfication. Each model is served on a different endpoint but on the same server.

Audio Classification

Sending an audio file to the server at http://127.0.0.1:3001/api/classify/audio using the POST method we will be able to get the data that looks as follows as the json response from the server:

{
  "predictions": {
    "emotion": { "class": "sad", "label": 3, "probability": 0.22 },
    "emotion_intensity": { "class": "normal", "label": 0, "probability": 0.85 },
    "gender": { "class": "male", "label": 0, "probability": 1.0 }
  },
  "success": true
}

Classifying audios

  1. Using cURL

To classify the audio using cURL make sure that you open the command prompt where the audio files are located for example in my case the audios are located in the audios folder so i open the command prompt in the audios folder or else i will provide the absolute path when making a cURL request for example

curl -X POST -F [email protected] http://127.0.0.1:3001/api/classify/audio

If everything went well we will get the following response from the server:

{
  "predictions": {
    "emotion": { "class": "sad", "label": 3, "probability": 0.22 },
    "emotion_intensity": { "class": "normal", "label": 0, "probability": 0.85 },
    "gender": { "class": "male", "label": 0, "probability": 1.0 }
  },
  "success": true
}
  1. Using Postman client

To make this request with postman we do it as follows:

  • Change the request method to POST at http://127.0.0.1:3001/api/classify/audio
  • Click on form-data
  • Select type to be file on the KEY attribute
  • For the KEY type audio and select the audio you want to predict under value Click send
  • If everything went well you will get the following response depending on the audio you have selected:
{
  "predictions": {
    "emotion": { "class": "sad", "label": 3, "probability": 0.22 },
    "emotion_intensity": { "class": "normal", "label": 0, "probability": 0.85 },
    "gender": { "class": "male", "label": 0, "probability": 1.0 }
  },
  "success": true
}
  1. Using JavaScript fetch api.

  2. First you need to get the input from html

  3. Create a formData object

  4. make a POST requests

res.json()) .then((data) => console.log(data));">
const input = document.getElementById("input").files[0];
let formData = new FormData();
formData.append("audio", input);
fetch("http://127.0.0.1:3001/api/classify/audio", {
  method: "POST",
  body: formData,
})
  .then((res) => res.json())
  .then((data) => console.log(data));

If everything went well you will be able to get expected response.

{
  "predictions": {
    "emotion": { "class": "sad", "label": 3, "probability": 0.22 },
    "emotion_intensity": { "class": "normal", "label": 0, "probability": 0.85 },
    "gender": { "class": "male", "label": 0, "probability": 1.0 }
  },
  "success": true
}

Notebooks

If you want to see how the models were trained you can open the respective notebooks:

  1. Audio Classification
Owner
crispengari
ai || software development. (creator of initialiseur)
crispengari
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022
A simple Python library for stochastic graphical ecological models

What is Viridicle? Viridicle is a library for simulating stochastic graphical ecological models. It implements the continuous time models described in

Theorem Engine 0 Dec 04, 2021
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

SHI Lab 174 Dec 19, 2022
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023
Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

5 May 23, 2022
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

FYH 4 Feb 22, 2022
A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets

HOW TO USE THIS PROJECT A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets Based on DeepLabCut toolbox, we run wit

1 Jan 10, 2022
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
hySLAM is a hybrid SLAM/SfM system designed for mapping

HySLAM Overview hySLAM is a hybrid SLAM/SfM system designed for mapping. The system is based on ORB-SLAM2 with some modifications and refactoring. Raú

Brian Hopkinson 15 Oct 10, 2022
Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics @WIFS2021 (Montpellier, France) Rony Abecidan, Vincent Itier, Jeremie Boulan

Rony Abecidan 6 Jan 06, 2023
An NVDA add-on to split screen reader and audio from other programs to different sound channels

An NVDA add-on to split screen reader and audio from other programs to different sound channels (add-on idea credit: Tony Malykh)

Joseph Lee 7 Dec 25, 2022
Code to produce syntactic representations that can be used to study syntax processing in the human brain

Can fMRI reveal the representation of syntactic structure in the brain? The code base for our paper on understanding syntactic representations in the

Aniketh Janardhan Reddy 4 Dec 18, 2022
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022
AirCode: A Robust Object Encoding Method

AirCode This repo contains source codes for the arXiv preprint "AirCode: A Robust Object Encoding Method" Demo Object matching comparison when the obj

Chen Wang 30 Dec 09, 2022
Pytorch implementation of NEGEV method. Paper: "Negative Evidence Matters in Interpretable Histology Image Classification".

Pytorch 1.10.0 code for: Negative Evidence Matters in Interpretable Histology Image Classification (https://arxiv. org/abs/xxxx.xxxxx) Citation: @arti

Soufiane Belharbi 4 Dec 01, 2022