This is a Deep Leaning API for classifying emotions from human face and human audios.

Overview

Emotion AI

This is a Deep Leaning API for classifying emotions from human face and human audios.

alt

Starting the server

To start the server first you need to install all the packages used by running the following command:

pip install -r requirements.txt
# make sure your current directory is "server"

After that you can start the server by running the following commands:

  1. change the directory from server to api:
cd api
  1. run the app.py
python app.py

The server will start at a default PORT of 3001 which you can configure in the api/app.py on the Config class:

class AppConfig:
    PORT = 3001
    DEBUG = False

If everything went well you will be able to make api request to the server.

EmotionAI

Consist of two parallel models that are trained with different model architectures to save different task. The one is for audio classification and the other is for facial emotion classfication. Each model is served on a different endpoint but on the same server.

Audio Classification

Sending an audio file to the server at http://127.0.0.1:3001/api/classify/audio using the POST method we will be able to get the data that looks as follows as the json response from the server:

{
  "predictions": {
    "emotion": { "class": "sad", "label": 3, "probability": 0.22 },
    "emotion_intensity": { "class": "normal", "label": 0, "probability": 0.85 },
    "gender": { "class": "male", "label": 0, "probability": 1.0 }
  },
  "success": true
}

Classifying audios

  1. Using cURL

To classify the audio using cURL make sure that you open the command prompt where the audio files are located for example in my case the audios are located in the audios folder so i open the command prompt in the audios folder or else i will provide the absolute path when making a cURL request for example

curl -X POST -F [email protected] http://127.0.0.1:3001/api/classify/audio

If everything went well we will get the following response from the server:

{
  "predictions": {
    "emotion": { "class": "sad", "label": 3, "probability": 0.22 },
    "emotion_intensity": { "class": "normal", "label": 0, "probability": 0.85 },
    "gender": { "class": "male", "label": 0, "probability": 1.0 }
  },
  "success": true
}
  1. Using Postman client

To make this request with postman we do it as follows:

  • Change the request method to POST at http://127.0.0.1:3001/api/classify/audio
  • Click on form-data
  • Select type to be file on the KEY attribute
  • For the KEY type audio and select the audio you want to predict under value Click send
  • If everything went well you will get the following response depending on the audio you have selected:
{
  "predictions": {
    "emotion": { "class": "sad", "label": 3, "probability": 0.22 },
    "emotion_intensity": { "class": "normal", "label": 0, "probability": 0.85 },
    "gender": { "class": "male", "label": 0, "probability": 1.0 }
  },
  "success": true
}
  1. Using JavaScript fetch api.

  2. First you need to get the input from html

  3. Create a formData object

  4. make a POST requests

res.json()) .then((data) => console.log(data));">
const input = document.getElementById("input").files[0];
let formData = new FormData();
formData.append("audio", input);
fetch("http://127.0.0.1:3001/api/classify/audio", {
  method: "POST",
  body: formData,
})
  .then((res) => res.json())
  .then((data) => console.log(data));

If everything went well you will be able to get expected response.

{
  "predictions": {
    "emotion": { "class": "sad", "label": 3, "probability": 0.22 },
    "emotion_intensity": { "class": "normal", "label": 0, "probability": 0.85 },
    "gender": { "class": "male", "label": 0, "probability": 1.0 }
  },
  "success": true
}

Notebooks

If you want to see how the models were trained you can open the respective notebooks:

  1. Audio Classification
Owner
crispengari
ai || software development. (creator of initialiseur)
crispengari
3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021)

3DDUNET This is the code for 3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021) Conference Paper Link Dataset We use SMOID dataset

1 Jan 07, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

63 Nov 18, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

Libraries, tools and tasks created and used at DeepMind Robotics.

DeepMind 270 Nov 30, 2022
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022
It is the assignment for COMP 576 in Rice University

COMP-576 It is the assignment for COMP 576 in Rice University There are two programming assignments and one Final Project. Assignment 1: It is a MLP a

Maojie Tang 1 Nov 25, 2021
SBINN: Systems-biology informed neural network

SBINN: Systems-biology informed neural network The source code for the paper M. Daneker, Z. Zhang, G. E. Karniadakis, & L. Lu. Systems biology: Identi

Lu Group 15 Nov 19, 2022
Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Kevin Bock 1.5k Jan 06, 2023
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
LineBoard - Python+React+MySQL-白板即時系統改善人群行為

LineBoard-白板即時系統改善人群行為 即時顯示實驗室的使用狀況,並遠端預約排隊,以此來改善人們的工作效率 程式架構 運作流程 使用者先至該實驗室網站預約

Bo-Jyun Huang 1 Feb 22, 2022
SuMa++: Efficient LiDAR-based Semantic SLAM (Chen et al IROS 2019)

SuMa++: Efficient LiDAR-based Semantic SLAM This repository contains the implementation of SuMa++, which generates semantic maps only using three-dime

Photogrammetry & Robotics Bonn 701 Dec 30, 2022
Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"

Anytime Autoregressive Model Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21 Yilun Xu, Yang Song, Sahaj Gara, Linyuan Go

Yilun Xu 22 Sep 08, 2022
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
Computations and statistics on manifolds with geometric structures.

Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r

875 Dec 31, 2022
Dungeons and Dragons randomized content generator

Component based Dungeons and Dragons generator Supports Entity/Monster Generation NPC Generation Weapon Generation Encounter Generation Environment Ge

Zac 3 Dec 04, 2021
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
FridaHookAppTool - Frida Hook App Tool With Python

FridaHookAppTool(以下是Hook mpaas框架的例子) mpaas移动开发框架ios端抓包hook脚本 使用方法:链接数据线,开启burp设置

13 Nov 30, 2022
Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners

DART Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners. Environment

ZJUNLP 83 Dec 27, 2022
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022