Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners

Overview

DART

Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners.

Environment

  • [email protected]
  • Use pip install -r requirements.txt to install dependencies.
  • wandb account is required if the user wants to search for best hyper-parameter combinations.

Data source

  • 16-shot GLUE dataset from LM-BFF.
  • Generated data consists of 5 random splits (13/21/42/87/100) for a task, each has 16 samples.

How to run

  • To run across each 5 splits in a task, use run.py:
    • In the arguments, encoder="inner" is the method proposed in the paper where verbalizers are other trainable tokens; encoder="manual" means verbalizers are selected fixed tokens; encoder="lstm" refers to the P-Tuning method.
$ python run.py -h
usage: run.py [-h] [--encoder {manual,lstm,inner,inner2}] [--task TASK]
              [--num_splits NUM_SPLITS] [--repeat REPEAT] [--load_manual]
              [--extra_mask_rate EXTRA_MASK_RATE]
              [--output_dir_suffix OUTPUT_DIR_SUFFIX]

optional arguments:
  -h, --help            show this help message and exit
  --encoder {manual,lstm,inner,inner2}
  --task TASK
  --num_splits NUM_SPLITS
  --repeat REPEAT
  --load_manual
  --extra_mask_rate EXTRA_MASK_RATE
  --output_dir_suffix OUTPUT_DIR_SUFFIX, -o OUTPUT_DIR_SUFFIX
  • To train and evaluate on a single split with details recorded, use inference.py.
    • Before running, [task_name, label_list, prompt_type] should be configured in the code.
    • prompt_type="none" refers to fixed verbalizer training, while "inner" refers to the method proposed in the paper. ("inner2" is deprecated 2-stage training)
  • To find optimal hyper-parameters for each task-split and reproduce our result, please use sweep.py:
    • Please refer to documentation for WandB for more details.
$ python sweep.py -h
usage: sweep.py [-h]
                [--task {SST-2,sst-5,mr,cr,mpqa,subj,trec,CoLA,MNLI,MNLI-mm,SNLI,QNLI,RTE-glue,MRPC,QQP}]
                [--encoder {none,mlp,lstm,inner,inner2}]
                [--seed_split {13,21,42,87,100} [{13,21,42,87,100} ...]]
                [--batch_size {4,8,16,24,32} [{4,8,16,24,32} ...]]
                [--sweep_id SWEEP_ID]

optional arguments:
  -h, --help            show this help message and exit
  --task {SST-2,sst-5,mr,cr,mpqa,subj,trec,CoLA,MNLI,MNLI-mm,SNLI,QNLI,RTE-glue,MRPC,QQP}
  --encoder {none,mlp,lstm,inner,inner2}
  --seed_split {13,21,42,87,100} [{13,21,42,87,100} ...]
  --batch_size {4,8,16,24,32} [{4,8,16,24,32} ...]
  --sweep_id SWEEP_ID
  • To train and evaluate with more customized configurations, use cli.py.
  • To analyze and visualize the results come from inference.py, use visualize.py and visualize_word_emb.py.

How to Cite

@article{DBLP:journals/corr/abs-2108-13161,
  author    = {Ningyu Zhang and
               Luoqiu Li and
               Xiang Chen and
               Shumin Deng and
               Zhen Bi and
               Chuanqi Tan and
               Fei Huang and
               Huajun Chen},
  title     = {Differentiable Prompt Makes Pre-trained Language Models Better Few-shot
               Learners},
  journal   = {CoRR},
  volume    = {abs/2108.13161},
  year      = {2021},
  url       = {https://arxiv.org/abs/2108.13161},
  eprinttype = {arXiv},
  eprint    = {2108.13161},
  timestamp = {Thu, 13 Jan 2022 17:33:17 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2108-13161.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
Owner
ZJUNLP
NLP Group of Knowledge Engine Lab at Zhejiang University
ZJUNLP
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
Lazy, a tool for running things in idle time

Lazy, a tool for running things in idle time Mostly used to stop CUDA ML model training from making my desktop unusable. Simply monitors keyboard/mous

N Shepperd 46 Nov 06, 2022
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022
Data for "Driving the Herd: Search Engines as Content Influencers" paper

herding_data Data for "Driving the Herd: Search Engines as Content Influencers" paper Dataset description The collection contains 2250 documents, 30 i

0 Aug 17, 2021
Implementation of the HMAX model of vision in PyTorch

PyTorch implementation of HMAX PyTorch implementation of the HMAX model that closely follows that of the MATLAB implementation of The Laboratory for C

Marijn van Vliet 52 Oct 13, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
Temporally Efficient Vision Transformer for Video Instance Segmentation, CVPR 2022, Oral

Temporally Efficient Vision Transformer for Video Instance Segmentation Temporally Efficient Vision Transformer for Video Instance Segmentation (CVPR

Hust Visual Learning Team 203 Dec 31, 2022
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx

Fabian Altekrueger 5 Jun 02, 2022
Real-time object detection on Android using the YOLO network with TensorFlow

TensorFlow YOLO object detection on Android Source project android-yolo is the first implementation of YOLO for TensorFlow on an Android device. It is

Nataniel Ruiz 624 Jan 03, 2023
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings This is the repository for t

RegLab 39 Jan 07, 2023
My implementation of transformers related papers for computer vision in pytorch

vision_transformers This is my personnal repo to implement new transofrmers based and other computer vision DL models I am currenlty working without a

samsja 1 Nov 10, 2021
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
Ground truth data for the Optical Character Recognition of Historical Classical Commentaries.

OCR Ground Truth for Historical Commentaries The dataset OCR ground truth for historical commentaries (GT4HistComment) was created from the public dom

Ajax Multi-Commentary 3 Sep 08, 2022
Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Accompanying code for the paper Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Kevin Wilkinghoff 6 Dec 01, 2022