Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

Related tags

Deep LearningATP-AMR
Overview

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs

PWC

PWC

Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs" accepted by findings of NAACL 2022.

News

  • 🎈 Release camera ready paper. arXiv 2022.04.20
  • 🎈 We have released four trained models and the test scripts. 2022.04.10

Todos

  • 🎯 We are working on merging our training/preprocessing code with the amrlib repo.

Brief Introduction

TL;DR: SOTA AMR Parsing single model using only 40k extra data. Rank 1st model on Structrual-Related Scores (SRL and Reentrancy).

As Abstract Meaning Representation (AMR) implicitly involves compound semantic annotations, we hypothesize auxiliary tasks which are semantically or formally related can better enhance AMR parsing. With carefully designed control experiments, we find that 1) Semantic role labeling (SRL) and dependency parsing (DP), would bring much more significant performance gain than unrelated tasks in the text-to-AMR transition. 2) To make a better fit for AMR, data from auxiliary tasks should be properly ``AMRized'' to PseudoAMR before training. 3) Intermediate-task training paradigm outperforms multitask learning when introducing auxiliary tasks to AMR parsing.

From an empirical perspective, we propose a principled method to choose, reform, and train auxiliary tasks to boost AMR parsing. Extensive experiments show that our method achieves new state-of-the-art performance on in-distribution, out-of-distribution, low-resources benchmarks of AMR parsing.

Requriments

Build envrionment for Spring

cd spring
conda create -n spring python=3.7
pip install -r requirements.txt
pip install -e .
# we use torch==1.11.0 and A40 GPU. lower torch version is fine.

Build envrionment for BLINK to do entity linking, Note that BLINK has some requirements conflicts with Spring, while the blinking script relies on both repos. So we build it upon Spring.

conda create -n blink37 -y python=3.7 && conda activate blink37

cd spring
pip install -r requirements.txt
pip install -e .

cd ../BLINK
pip install -r requirements.txt
pip install -e .
bash download_blink_models.sh

Preprocess and AMRization

coming soon ~

Training

(cleaning code and data in progress)

cd spring/bin
  • Train ATP-DP Task
python train.py --direction dp --config /home/cl/AMR_Multitask_Inter/spring/configs/config_dp.yaml
  • Train ATP-SRL Task
python train.py --direction dp --config /home/cl/AMR_Multitask_Inter/spring/configs/config_srl.yaml 
# yes, the direction is also dp
  • Train AMR Task based on intermediate ATP-SRL/DP Model
python train.py --direction amr --checkpoint PATH_TO_SRL_DP_MODEL --config ../configs/config.yaml
  • Train AMR,SRL,DP Task in multitask Manner
python train.py --direction multi --config ../configs/config_multitask.yaml

Inference

conda activate spring

cd script
bash intermediate_eval.sh MODEL_PATH 
# it will generate the gold and the parsed amr files, you should the change the path of AMR2.0/3.0 Dataset in the script.

conda activate blink37 
# you should download the blink models according to the ATP/BLINK/download_blink_models.sh in BLINK repo
bash blink.sh PARSED_AMR BLINK_MODEL_DIR

cd ../amr-evaluation
bash evaluation.sh PARSED_AMR.blink GOLD_AMR_PATH

Models Release

You could refer to the inference section and download the models below to reproduce the result in our paper.

#scores
Smatch -> P: 0.858, R: 0.844, F: 0.851
Unlabeled -> P: 0.890, R: 0.874, F: 0.882
No WSD -> -> P: 0.863, R: 0.848, F: 0.855
Concepts -> P: 0.914 , R: 0.895 , F: 0.904
Named Ent. -> P: 0.928 , R: 0.901 , F: 0.914
Negations -> P: 0.756 , R: 0.758 , F: 0.757
Wikification -> P: 0.849 , R: 0.824 , F: 0.836
Reentrancies -> P: 0.756 , R: 0.744 , F: 0.750
SRL -> P: 0.840 , R: 0.830 , F: 0.835
#scores
Smatch -> P: 0.859, R: 0.844, F: 0.852
Unlabeled -> P: 0.891, R: 0.876, F: 0.883
No WSD -> -> P: 0.863, R: 0.849, F: 0.856
Concepts -> P: 0.917 , R: 0.898 , F: 0.907
Named Ent. -> P: 0.942 , R: 0.921 , F: 0.931
Negations -> P: 0.742 , R: 0.755 , F: 0.749
Wikification -> P: 0.851 , R: 0.833 , F: 0.842
Reentrancies -> P: 0.753 , R: 0.741 , F: 0.747
SRL -> P: 0.837 , R: 0.830 , F: 0.833
#scores
Smatch -> P: 0.859, R: 0.847, F: 0.853
Unlabeled -> P: 0.891, R: 0.877, F: 0.884
No WSD -> -> P: 0.863, R: 0.851, F: 0.857
Concepts -> P: 0.917 , R: 0.899 , F: 0.908
Named Ent. -> P: 0.938 , R: 0.917 , F: 0.927
Negations -> P: 0.740 , R: 0.755 , F: 0.747
Wikification -> P: 0.849 , R: 0.830 , F: 0.840
Reentrancies -> P: 0.755 , R: 0.748 , F: 0.751
SRL -> P: 0.837 , R: 0.836 , F: 0.836
#scores
Smatch -> P: 0.844, R: 0.836, F: 0.840
Unlabeled -> P: 0.875, R: 0.866, F: 0.871
No WSD -> -> P: 0.849, R: 0.840, F: 0.845
Concepts -> P: 0.908 , R: 0.892 , F: 0.900
Named Ent. -> P: 0.900 , R: 0.879 , F: 0.889
Negations -> P: 0.734 , R: 0.729 , F: 0.731
Wikification -> P: 0.816 , R: 0.798 , F: 0.807
Reentrancies -> P: 0.729 , R: 0.749 , F: 0.739
SRL -> P: 0.822 , R: 0.830 , F: 0.826

Acknowledgements

We thank all people/group that share open-source scripts for this project, which include the authors for SPRING, amrlib, smatch, amr-evaluation, BLINK and all other repos.

Citation

If you feel our work helpful, please kindly cite

@misc{https://doi.org/10.48550/arxiv.2204.08875,
  doi = {10.48550/ARXIV.2204.08875},
  
  url = {https://arxiv.org/abs/2204.08875},
  
  author = {Chen, Liang and Wang, Peiyi and Xu, Runxin and Liu, Tianyu and Sui, Zhifang and Chang, Baobao},
  
  keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs},
  
  publisher = {arXiv},
  
  year = {2022},
  
  copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International}
}
Owner
Chen Liang
Currently a research intern at MSR Asia, NLC group
Chen Liang
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Atmospheric Cloud Simulation Group @ Jagiellonian University 15 Nov 23, 2022
This code implements constituency parse tree aggregation

README This code implements constituency parse tree aggregation. Folder details code: This folder contains the code that implements constituency parse

Adithya Kulkarni 0 Oct 11, 2021
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Multimedia Research 484 Dec 29, 2022
Localizing Visual Sounds the Hard Way

Localizing-Visual-Sounds-the-Hard-Way Code and Dataset for "Localizing Visual Sounds the Hard Way". The repo contains code and our pre-trained model.

Honglie Chen 58 Dec 07, 2022
TVNet: Temporal Voting Network for Action Localization

TVNet: Temporal Voting Network for Action Localization This repo holds the codes of paper: "TVNet: Temporal Voting Network for Action Localization". P

hywang 5 Jul 26, 2022
HGCN: Harmonic Gated Compensation Network For Speech Enhancement

HGCN The official repo of "HGCN: Harmonic Gated Compensation Network For Speech Enhancement", which was accepted at ICASSP2022. How to use step1: Calc

ScorpioMiku 33 Nov 14, 2022
An open source app to help calm you down when needed.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Sean P. Myrick V19.1.7.2 2 Oct 24, 2022
Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021)

Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021) Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang, Hongyang Li, Qinhong Jia

Yunsong Zhou 51 Dec 14, 2022
Ian Covert 130 Jan 01, 2023
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
PerfFuzz: Automatically Generate Pathological Inputs for C/C++ programs

PerfFuzz Performance problems in software can arise unexpectedly when programs are provided with inputs that exhibit pathological behavior. But how ca

Caroline Lemieux 125 Nov 18, 2022
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 03, 2023
The Deep Learning with Julia book, using Flux.jl.

Deep Learning with Julia DL with Julia is a book about how to do various deep learning tasks using the Julia programming language and specifically the

Logan Kilpatrick 67 Dec 25, 2022
Stroke-predictions-ml-model - Machine learning model to predict individuals chances of having a stroke

stroke-predictions-ml-model machine learning model to predict individuals chance

Alex Volchek 1 Jan 03, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022
Official code for the paper "Self-Supervised Prototypical Transfer Learning for Few-Shot Classification"

Self-Supervised Prototypical Transfer Learning for Few-Shot Classification This repository contains the reference source code and pre-trained models (

EPFL INDY 44 Nov 04, 2022
TorchXRayVision: A library of chest X-ray datasets and models.

torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the

Machine Learning and Medicine Lab 575 Jan 08, 2023
Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Aniruddha Gokhale 15 Dec 02, 2022
Charsiu: A transformer-based phonetic aligner

Charsiu: A transformer-based phonetic aligner [arXiv] Note. This is a preview version. The aligner is under active development. New functions, new lan

jzhu 166 Dec 09, 2022