Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

Related tags

Deep LearningATP-AMR
Overview

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs

PWC

PWC

Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs" accepted by findings of NAACL 2022.

News

  • 🎈 Release camera ready paper. arXiv 2022.04.20
  • 🎈 We have released four trained models and the test scripts. 2022.04.10

Todos

  • 🎯 We are working on merging our training/preprocessing code with the amrlib repo.

Brief Introduction

TL;DR: SOTA AMR Parsing single model using only 40k extra data. Rank 1st model on Structrual-Related Scores (SRL and Reentrancy).

As Abstract Meaning Representation (AMR) implicitly involves compound semantic annotations, we hypothesize auxiliary tasks which are semantically or formally related can better enhance AMR parsing. With carefully designed control experiments, we find that 1) Semantic role labeling (SRL) and dependency parsing (DP), would bring much more significant performance gain than unrelated tasks in the text-to-AMR transition. 2) To make a better fit for AMR, data from auxiliary tasks should be properly ``AMRized'' to PseudoAMR before training. 3) Intermediate-task training paradigm outperforms multitask learning when introducing auxiliary tasks to AMR parsing.

From an empirical perspective, we propose a principled method to choose, reform, and train auxiliary tasks to boost AMR parsing. Extensive experiments show that our method achieves new state-of-the-art performance on in-distribution, out-of-distribution, low-resources benchmarks of AMR parsing.

Requriments

Build envrionment for Spring

cd spring
conda create -n spring python=3.7
pip install -r requirements.txt
pip install -e .
# we use torch==1.11.0 and A40 GPU. lower torch version is fine.

Build envrionment for BLINK to do entity linking, Note that BLINK has some requirements conflicts with Spring, while the blinking script relies on both repos. So we build it upon Spring.

conda create -n blink37 -y python=3.7 && conda activate blink37

cd spring
pip install -r requirements.txt
pip install -e .

cd ../BLINK
pip install -r requirements.txt
pip install -e .
bash download_blink_models.sh

Preprocess and AMRization

coming soon ~

Training

(cleaning code and data in progress)

cd spring/bin
  • Train ATP-DP Task
python train.py --direction dp --config /home/cl/AMR_Multitask_Inter/spring/configs/config_dp.yaml
  • Train ATP-SRL Task
python train.py --direction dp --config /home/cl/AMR_Multitask_Inter/spring/configs/config_srl.yaml 
# yes, the direction is also dp
  • Train AMR Task based on intermediate ATP-SRL/DP Model
python train.py --direction amr --checkpoint PATH_TO_SRL_DP_MODEL --config ../configs/config.yaml
  • Train AMR,SRL,DP Task in multitask Manner
python train.py --direction multi --config ../configs/config_multitask.yaml

Inference

conda activate spring

cd script
bash intermediate_eval.sh MODEL_PATH 
# it will generate the gold and the parsed amr files, you should the change the path of AMR2.0/3.0 Dataset in the script.

conda activate blink37 
# you should download the blink models according to the ATP/BLINK/download_blink_models.sh in BLINK repo
bash blink.sh PARSED_AMR BLINK_MODEL_DIR

cd ../amr-evaluation
bash evaluation.sh PARSED_AMR.blink GOLD_AMR_PATH

Models Release

You could refer to the inference section and download the models below to reproduce the result in our paper.

#scores
Smatch -> P: 0.858, R: 0.844, F: 0.851
Unlabeled -> P: 0.890, R: 0.874, F: 0.882
No WSD -> -> P: 0.863, R: 0.848, F: 0.855
Concepts -> P: 0.914 , R: 0.895 , F: 0.904
Named Ent. -> P: 0.928 , R: 0.901 , F: 0.914
Negations -> P: 0.756 , R: 0.758 , F: 0.757
Wikification -> P: 0.849 , R: 0.824 , F: 0.836
Reentrancies -> P: 0.756 , R: 0.744 , F: 0.750
SRL -> P: 0.840 , R: 0.830 , F: 0.835
#scores
Smatch -> P: 0.859, R: 0.844, F: 0.852
Unlabeled -> P: 0.891, R: 0.876, F: 0.883
No WSD -> -> P: 0.863, R: 0.849, F: 0.856
Concepts -> P: 0.917 , R: 0.898 , F: 0.907
Named Ent. -> P: 0.942 , R: 0.921 , F: 0.931
Negations -> P: 0.742 , R: 0.755 , F: 0.749
Wikification -> P: 0.851 , R: 0.833 , F: 0.842
Reentrancies -> P: 0.753 , R: 0.741 , F: 0.747
SRL -> P: 0.837 , R: 0.830 , F: 0.833
#scores
Smatch -> P: 0.859, R: 0.847, F: 0.853
Unlabeled -> P: 0.891, R: 0.877, F: 0.884
No WSD -> -> P: 0.863, R: 0.851, F: 0.857
Concepts -> P: 0.917 , R: 0.899 , F: 0.908
Named Ent. -> P: 0.938 , R: 0.917 , F: 0.927
Negations -> P: 0.740 , R: 0.755 , F: 0.747
Wikification -> P: 0.849 , R: 0.830 , F: 0.840
Reentrancies -> P: 0.755 , R: 0.748 , F: 0.751
SRL -> P: 0.837 , R: 0.836 , F: 0.836
#scores
Smatch -> P: 0.844, R: 0.836, F: 0.840
Unlabeled -> P: 0.875, R: 0.866, F: 0.871
No WSD -> -> P: 0.849, R: 0.840, F: 0.845
Concepts -> P: 0.908 , R: 0.892 , F: 0.900
Named Ent. -> P: 0.900 , R: 0.879 , F: 0.889
Negations -> P: 0.734 , R: 0.729 , F: 0.731
Wikification -> P: 0.816 , R: 0.798 , F: 0.807
Reentrancies -> P: 0.729 , R: 0.749 , F: 0.739
SRL -> P: 0.822 , R: 0.830 , F: 0.826

Acknowledgements

We thank all people/group that share open-source scripts for this project, which include the authors for SPRING, amrlib, smatch, amr-evaluation, BLINK and all other repos.

Citation

If you feel our work helpful, please kindly cite

@misc{https://doi.org/10.48550/arxiv.2204.08875,
  doi = {10.48550/ARXIV.2204.08875},
  
  url = {https://arxiv.org/abs/2204.08875},
  
  author = {Chen, Liang and Wang, Peiyi and Xu, Runxin and Liu, Tianyu and Sui, Zhifang and Chang, Baobao},
  
  keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs},
  
  publisher = {arXiv},
  
  year = {2022},
  
  copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International}
}
Owner
Chen Liang
Currently a research intern at MSR Asia, NLC group
Chen Liang
Making a music video with Wav2CLIP and VQGAN-CLIP

music2video Overview A repo for making a music video with Wav2CLIP and VQGAN-CLIP. The base code was derived from VQGAN-CLIP The CLIP embedding for au

Joel Jang | 장요엘 163 Dec 26, 2022
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022
Source code for PairNorm (ICLR 2020)

PairNorm Official pytorch source code for PairNorm paper (ICLR 2020) This code requires pytorch_geometric=1.3.2 usage For SGC, we use original PairNo

62 Dec 08, 2022
【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]

Hong Wang 48 Nov 23, 2022
Prompts - Read a textfile of prompts and import into anki via ankiconnect

prompts read a textfile of prompts and import into anki via ankiconnect Usage In

Alexander Cobleigh 2 Jul 28, 2022
An Straight Dilated Network with Wavelet for image Deblurring

SDWNet: A Straight Dilated Network with Wavelet Transformation for Image Deblurring(offical) 1. Introduction This repo is not only used for our paper(

FlyEgle 41 Jan 04, 2023
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
Constraint-based geometry sketcher for blender

Constraint-based sketcher addon for Blender that allows to create precise 2d shapes by defining a set of geometric constraints like tangent, distance,

1.7k Dec 31, 2022
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 02, 2023
List of papers, code and experiments using deep learning for time series forecasting

Deep Learning Time Series Forecasting List of state of the art papers focus on deep learning and resources, code and experiments using deep learning f

Alexander Robles 2k Jan 06, 2023
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

9.3k Jan 02, 2023
Official repository for the CVPR 2021 paper "Learning Feature Aggregation for Deep 3D Morphable Models"

Deep3DMM Official repository for the CVPR 2021 paper Learning Feature Aggregation for Deep 3D Morphable Models. Requirements This code is tested on Py

38 Dec 27, 2022
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers

Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers This is an implementation of A Physics-Informed Vector Quantized Autoencoder for Dat

DreamSoul 3 Sep 12, 2022