An Straight Dilated Network with Wavelet for image Deblurring

Related tags

Deep LearningSDWNet
Overview

SDWNet: A Straight Dilated Network with Wavelet Transformation for Image Deblurring(offical)

1. Introduction

This repo is not only used for our paper(SDWNet) but also used for Deblur codebase. We implement a number of components that allow you to quickly implement your own model.

  • Paper The SDWNet has been accepted by iccvw2021, you can read the paper here.
  • Model

2. Folder Structure

  ---SDWNet
  |
  |- config
  |    |- model.yaml                            -> Model all traninig hyparameters with data log.
  |    |-Config.py                              -> Translate the config file to dict.
  |- data
  |    |- vanilar_dataset.py                    -> The dataset for build the LR & HR images.
  |    |- utils.py                              -> Utils for get patch and calculate the model metrics.
  |    |- augments.py                           -> Augment method for LR & HR images.
  |- model
  |    - NTIRE2021_Deblur
  |        - uniA_ELU
  |            |- layerlib_stage1               -> Model module.
  |            |- model_stage1_dual_branch_tail.py -> Main model.
  |- loss
  |   |- gendrator_loss.py                      -> Loss function define.
  |- optim
  |   |- optimizer.py                           -> Optimizer function define.
  |- train.py                                   -> Training.
  |- goprol_train.sh                             -> Training shell.
  |- inference_ddp.py                           -> Inference.
  |- inference_ddp.sh                           -> Inference shell.

3. Training

  • Crop the src Training LR and HR images to 480x480 by sliding window which step is 240, so we got 24 patchs form one 720x1280 images both LR and HR.
  • Training the model with the 416 x 416 size, use randomcrop, RGB shuffle, horizon flip, rotate and so on.
  • Normalize the images to Tensor with 255 but not 1. which without process the mean and std.
python -W ignore train.py \
--config_file $config_folder \
--dist-url 'tcp://127.0.0.1:8888' \
--dist-backend 'nccl' \
--multiprocessing-distributed=1 \
--world-size=1 \
--rank=0 \

4. Inference

  • Inference the src LR images and get the SR images
python -W ignore inference_ddp.py \
--config_file $config_folder \
--dist-url 'tcp://127.0.0.1:8989' \
--dist-backend 'nccl' \
--multiprocessing-distributed=1 \
--world-size=1 \
--rank=0 \

5. Calculate

  • Calculate the PSNR and SSIM
python utils/calc_psnr_ssim_official.py

If you find this repo useful for your research, please consider citing the papers

@InProceedings{
  Zou_2021_ICCV, 
  author = {Zou, Wenbin and Jiang, Mingchao and Zhang, Yunchen and Chen, Liang and Lu, Zhiyong and Wu, Yi}, 
  title = {SDWNet: A Straight Dilated Network With Wavelet Transformation for Image Deblurring}, 
  booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops}, 
  month = {October}, 
  year = {2021}, 
  pages = {1895-1904} 
  }
Owner
FlyEgle
JOYY AI GROUP - Machine Learning Engineer(Computer Vision)
FlyEgle
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022
TensorFlow implementation of "Variational Inference with Normalizing Flows"

[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co

YeongHyeon Park 7 Jun 08, 2022
CNN Based Meta-Learning for Noisy Image Classification and Template Matching

CNN Based Meta-Learning for Noisy Image Classification and Template Matching Introduction This master thesis used a few-shot meta learning approach to

Kumar Manas 2 Dec 09, 2021
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch

pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 269 Jan 02, 2023
This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural tree born form a large search space

SeBoW: Self-Born Wiring for neural trees(PaddlePaddle version) This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural

HollyLee 13 Dec 08, 2022
Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021) Kun Wang, Zhenyu Zhang, Zhiqiang Yan, X

kunwang 66 Nov 24, 2022
This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents".

Introduction This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents". If

tsc 0 Jan 11, 2022
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

Phil Wang 1.5k Jan 02, 2023
Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection

fpn.pytorch Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection Introduction This project inherits the property of our pytorc

Jianwei Yang 912 Dec 21, 2022
Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation"

Implicit-Semantic-Response-Alignment Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation" Prerequisites pyt

4 Dec 19, 2022
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
face2comics by Sxela (Alex Spirin) - face2comics datasets

This is a paired face to comics dataset, which can be used to train pix2pix or similar networks.

Alex 164 Nov 13, 2022
A simple Tensorflow based library for deep and/or denoising AutoEncoder.

libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st

Rajarshee Mitra 147 Nov 18, 2022
Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

AutoAugment - Learning Augmentation Policies from Data Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by Au

Philip Popien 1.3k Jan 02, 2023
InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images

InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images Hong Wang, Yuexiang Li, Haimiao Zhang, Deyu Men

Hong Wang 4 Dec 27, 2022
Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it

Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics.

mani 1.2k Jan 07, 2023
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.

ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch

Edu 104 Jan 05, 2023
NHL 94 AI contests

nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH

Mathieu Poliquin 2 Dec 06, 2021
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022