Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it

Overview

Awesome AI-ML-DL Awesome License: CC BY-SA 4.0

Better NLP: Better NLP

NLP Java: NLP Java | NLP Clojure: NLP Clojure | NLP Kotlin: NLP Kotlin | NLP Scala: NLP Scala |
NLP using DL4J (cuda) NLP using DL4J (cuda)

Tribuo: Tribuo | DeepNetts: DeepNetts | Dataiku DSS: Dataiku DSS | Grakn: Grakn | Jupyter-Java: Jupyter-Java |
MLPMNist using DL4J: MLPMNist using DL4J | Zeppelin: Zeppelin


Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics.

This repo is dedicated to engineers, developers, data scientists and all other professions that take interest in AI, ML, DL and related sciences. To make learning interesting and to create a place to easily find all the necessary material. Please contribute, watch, star, fork and share the repo with others in your community.

Watching the repo will keep you posted of all the changes (commits) that go into the repo.

Also, please SPONSOR us, find out how-to!

Contributing

Contributions are very welcome, please share back with the wider community (and get credited for it)!

Please have a look at the CONTRIBUTING guidelines, also have a read about our licensing policy.

Sponsoring

With GitHub's new project sponsor program you can now sponsor projects like this, see how.

Comments
  • Wolfram Neural Net Repository

    Wolfram Neural Net Repository

    Probably a useful link to add to this repo (under Mathematica / Wolfram Language):

    https://resources.wolframcloud.com/NeuralNetRepository/

    The Wolfram Neural Net Repository is a public resource that hosts an expanding collection of trained and untrained neural network models, suitable for immediate evaluation, training, visualization, transfer learning and more.

    enhancement Hacktoberfest2019 
    opened by arnoudbuzing 7
  • Why to add

    Why to add "Tutorial" in names of R articles added?

    Articles are self explanatory from their headings. I feel adding tutorial specifically under R subsection is somewhat should not be there.

    Just like other good articles by great authors, their heading should be kept unchanged.

    opened by dA505819 5
  • Broken link

    Broken link

    Reached this awesome list from the : akullpp/awesome-java .

    https://github.com/neomatrix369/awesome-ai-ml-dl/blob/master/details/java-jvm.md#java

    Using Java for Artificial Intelligence (Tweet)

    This link is broken.

    Thank you!

    opened by tjj225 4
  • Added Computer Vision topic under Julia, Python and R

    Added Computer Vision topic under Julia, Python and R

    Purpose : To add materials of Computer Vision field into the repository as it had none.

    Contents : Motivation (intro to computer vision), Digital image processing, Opencv and its tutorials, Courses from other organisations, Conferences to follow and some famous computer vision blogs.

    @neomatrix369 please check the pull request. Waiting for your feedback on it.

    enhancement Hacktoberfest2019 
    opened by jerryfrancis-97 3
  • Need for adding Computer Vision topic under Julia, Python and R

    Need for adding Computer Vision topic under Julia, Python and R

    Computer vision topic should focus on the basics of image processing , different filters used, and will then move onto CNNs and deep learning methods of computer vision.

    enhancement Hacktoberfest2019 
    opened by jerryfrancis-97 3
  • Broken link for Object tracking under Image processing heading

    Broken link for Object tracking under Image processing heading

    https://github.com/virgili0/Virgilio/blob/master/serving/inferno/computer-vision/object-tracking/object-tracking.ipynb is giving error no. 404, under heading Image Processing under Computer Vision in /details/julia-python-and-r.md

    deadlinks 
    opened by therc01 2
  • Add Flyte

    Add Flyte

    Signed-off-by: Samhita Alla [email protected]

    Flyte is a workflow automation platform for complex, mission-critical data and ML processes at scale. A detailed overview of the features can be seen in the GitHub repo.

    enhancement 
    opened by samhita-alla 2
  • added measures.md #hacktoberfest

    added measures.md #hacktoberfest

    This PR is an extension to introduction to code-mixing and code-switching!

    • added a few important metrics and their descriptions useful for modeling code-mixing corpus
    • included useful resources which described the metrics in detail
    enhancement hacktoberfest hacktoberfest-accepted 
    opened by UmaGunturi 2
  • Add Automated Testing for Broken Links in Markdown Files

    Add Automated Testing for Broken Links in Markdown Files

    Requesting a new issue to be assigned to me:

    Add automated testing to ensure all links in markdown files are not broken, and alert when there are issues with links.

    @neomatrix369 - let me know if you want me to work on this issue or if it's not helpful for your project! I would love to contribute as part of hacktoberfest.

    enhancement deadlinks automation 
    opened by MattRudy 2
  • Find and fix broken/dead links

    Find and fix broken/dead links

    As see from #53 we can have broken/dead links, links that once worked can be unavailable for reasons outside the control of this project/repo!

    Hence I have decided to manually scan (for now) the repo from time to time for such links and fix them - if there is one. Here are the steps to take:

    New broken/dead links

    • find missing links using, markdown-link-check (see https://www.npmjs.com/package/markdown-link-check to find out how to install and use it)
    • once installed, use the below command in the root of the project:
    $ ls **/*.md | xargs -n 1 markdown-link-check --quiet
    
    ### This recursively finds all markdown files in the repo, 
    ### scans them and only reports those files which have 
    ### broken/dead links in them. 
    
    • try to fix the broken/dead links by hand
    • we are only looking for HTTP response code of 404, any other response codes can be ignored
    • if a fix cannot be found, best mark the link with a '[deadlink]' marker
    • in certain cases it's a good idea to leave the old link with the '[deadlink]' marker next to it even though we have found a new working one

    Existing broken/dead links across the repo

    Existing dead/broken links are marked with the '[deadlink]' marker.

    As part of this issue, fixing these links is also helpful - although if they are left in there it's cause their fix wasn't immediately available or found on searching on the relevant sources.

    Eventually, we can automate the task of finding such links via a GitHub action during GitHub events like commit, push or pull request creation.

    good first issue hacktoberfest 
    opened by neomatrix369 4
  • Add more features to the BetterNLP library

    Add more features to the BetterNLP library

    On the back of this discussion, @shahanesanket and I will take this further https://github.com/pandas-profiling/pandas-profiling/issues/278, some high-level ideas:

    • Missing value analysis
    • Text length analysis
      • 2.1 min, max, average, quantiles
      • 2.2 freq words, infrequent words (can include the deepmoji project's tokenizer. it's very robust)
      • 2.2 word cloud. (if it isn't a far stretched goal)

    @shahanesanket let's continue with our discussions here.

    enhancement hacktoberfest discussion 
    opened by neomatrix369 3
Owner
mani
3X @Kaggle Expert @Java champion, Polyglot, Software Crafter, performance, @graalvm, AI, ML, DL, NLP, Data Science, Developer communities, speaker, blogger
mani
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
A quantum game modeling of pandemic (QHack 2022)

Contributors: @JongheumJung, @YoonjaeChung, @GyunghunKim Abstract In the regime of a global pandemic, leaders around the world need to consider variou

Yoonjae Chung 8 Apr 03, 2022
Code for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in Deep Latent Space"

SRHEN This is a better and simpler implementation for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in

1 Oct 28, 2022
EMNLP 2020 - Summarizing Text on Any Aspects

Summarizing Text on Any Aspects This repo contains preliminary code of the following paper: Summarizing Text on Any Aspects: A Knowledge-Informed Weak

Bowen Tan 35 Nov 14, 2022
Learning from graph data using Keras

Steps to run = Download the cora dataset from this link : https://linqs.soe.ucsc.edu/data unzip the files in the folder input/cora cd code python eda

Mansar Youness 64 Nov 16, 2022
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
Repository for the COLING 2020 paper "Explainable Automated Fact-Checking: A Survey."

Explainable Fact Checking: A Survey This repository and the accompanying webpage contain resources for the paper "Explainable Fact Checking: A Survey"

Neema Kotonya 42 Nov 17, 2022
Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs In this work, we propose an algorithm DP-SCAFFOLD(-warm), whic

19 Nov 10, 2022
A repo with study material, exercises, examples, etc for Devnet SPAUTO

MPLS in the SDN Era -- DevNet SPAUTO Get right to the study material: Checkout the Wiki! A lab topology based on MPLS in the SDN era book used for 30

Hugo Tinoco 67 Nov 16, 2022
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Ibai Gorordo 12 Aug 27, 2022
Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency[ECCV 2020]

Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency(ECCV 2020) This is an official python implementati

304 Jan 03, 2023
A research toolkit for particle swarm optimization in Python

PySwarms is an extensible research toolkit for particle swarm optimization (PSO) in Python. It is intended for swarm intelligence researchers, practit

Lj Miranda 1k Dec 30, 2022
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
GraPE is a Rust/Python library for high-performance Graph Processing and Embedding.

GraPE GraPE (Graph Processing and Embedding) is a fast graph processing and embedding library, designed to scale with big graphs and to run on both of

AnacletoLab 194 Dec 29, 2022
A Distributional Approach To Controlled Text Generation

A Distributional Approach To Controlled Text Generation This is the repository code for the ICLR 2021 paper "A Distributional Approach to Controlled T

NAVER 102 Jan 07, 2023
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

張致強 14 Dec 02, 2022