Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

Related tags

Deep LearningSPICE
Overview

SPICE: Semantic Pseudo-labeling for Image Clustering

By Chuang Niu and Ge Wang

This is a Pytorch implementation of the paper. (In updating)

PWC PWC PWC PWC PWC

Installation

Please refer to requirement.txt for all required packages. Assuming Anaconda with python 3.7, a step-by-step example for installing this project is as follows:

conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch
conda install -c conda-forge addict tensorboard python-lmdb
conda install matplotlib scipy scikit-learn pillow

Then, clone this repo

git clone https://github.com/niuchuangnn/SPICE.git
cd SPICE

Data

Prepare datasets of interest as described in dataset.md.

Training

Read the training tutorial for details.

Evaluation

Evaluation of SPICE-Self:

python tools/eval_self.py --config-file configs/stl10/eval.py --weight PATH/TO/MODEL --all 1

Evaluation of SPICE-Semi:

python tools/eval_semi.py --load_path PATH/TO/MODEL --net WideResNet --widen_factor 2 --data_dir PATH/TO/DATA --dataset cifar10 --all 1 

Read the evaluation tutorial for more descriptions about the evaluation and the visualization of learned clusters.

Model Zoo

All trained models in our paper are available as follows.

Dataset Version ACC NMI ARI Model link
STL10 SPICE-Self 91.0 82.0 81.5 Model
SPICE 93.8 87.2 87.0 Model
SPICE-Self* 89.9 80.9 79.7 Model
SPICE* 92.9 86.0 85.3 Model
CIFAR10 SPICE-Self 83.8 73.4 70.5 Model
SPICE 92.6 86.5 85.2 Model
SPICE-Self* 84.9 74.5 71.8 Model
SPICE* 91.7 85.8 83.6 Model
CIFAR100 SPICE-Self 46.8 44.8 29.4 Model
SPICE 53.8 56.7 38.7 Model
SPICE-Self* 48.0 45.0 30.8 Model
SPICE* 58.4 58.3 42.2 Model
ImageNet-10 SPICE-Self 96.9 92.7 93.3 Model
SPICE 96.7 91.7 92.9 Model
ImageNet-Dog SPICE-Self 54.6 49.8 36.2 Model
SPICE 55.4 50.4 34.3 Model
TinyImageNet SPICE-Self 30.5 44.9 16.3 Model
SPICE-Self* 29.2 52.5 14.5 Model

More models based on ResNet18 for both SPICE-Self* and SPICE-Semi*.

Dataset Version ACC NMI ARI Model link
STL10 SPICE-Self* 86.2 75.6 73.2 Model
SPICE* 92.0 85.2 83.6 Model
CIFAR10 SPICE-Self* 84.5 73.9 70.9 Model
SPICE* 91.8 85.0 83.6 Model
CIFAR100 SPICE-Self* 46.8 45.7 32.1 Model
SPICE* 53.5 56.5 40.4 Model

Acknowledgement for reference repos

Citation

@misc{niu2021spice,
      title={SPICE: Semantic Pseudo-labeling for Image Clustering}, 
      author={Chuang Niu and Ge Wang},
      year={2021},
      eprint={2103.09382},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Chuang Niu
Chuang Niu
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

알고리즘 스터디 🔥 부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다. 개인적인 사정 등으로 S034, S055만 참가하였습니다. 스터디 목적 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 +

2 Jan 11, 2022
Cross-platform-profile-pic-changer - Script to change profile pictures across multiple platforms

cross-platform-profile-pic-changer script to change profile pictures across mult

4 Jan 17, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 08, 2023
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx

Fabian Altekrueger 5 Jun 02, 2022
This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger Bands to create a projected active liquidity range.

Gamma's Strategy One This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger

Gamma Strategies 46 Dec 02, 2022
Least Square Calibration for Peer Reviews

Least Square Calibration for Peer Reviews Requirements gurobipy - for solving convex programs GPy - for Bayesian baseline numpy pandas To generate p

Sigma <a href=[email protected]"> 1 Nov 01, 2021
Equivariant GNN for the prediction of atomic multipoles up to quadrupoles.

Equivariant Graph Neural Network for Atomic Multipoles Description Repository for the Model used in the publication 'Learning Atomic Multipoles: Predi

16 Nov 22, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022
This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".

L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated p

Jiaqi Gu 9 Jul 14, 2022
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance.

Qualcomm Innovation Center 137 Jan 03, 2023
Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.

clip-text-decoder Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script. Example Predi

Frank Odom 36 Dec 21, 2022
From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

SESNet for remote sensing image change detection It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Se

1 May 24, 2022
CLEAR algorithm for multi-view data association

CLEAR: Consistent Lifting, Embedding, and Alignment Rectification Algorithm The Matlab, Python, and C++ implementation of the CLEAR algorithm, as desc

MIT Aerospace Controls Laboratory 30 Jan 02, 2023
[ICML 2021] "Graph Contrastive Learning Automated" by Yuning You, Tianlong Chen, Yang Shen, Zhangyang Wang

Graph Contrastive Learning Automated PyTorch implementation for Graph Contrastive Learning Automated [talk] [poster] [appendix] Yuning You, Tianlong C

Shen Lab at Texas A&M University 80 Nov 23, 2022
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

octo 6 Apr 18, 2022
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022