Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

Related tags

Deep LearningSPICE
Overview

SPICE: Semantic Pseudo-labeling for Image Clustering

By Chuang Niu and Ge Wang

This is a Pytorch implementation of the paper. (In updating)

PWC PWC PWC PWC PWC

Installation

Please refer to requirement.txt for all required packages. Assuming Anaconda with python 3.7, a step-by-step example for installing this project is as follows:

conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch
conda install -c conda-forge addict tensorboard python-lmdb
conda install matplotlib scipy scikit-learn pillow

Then, clone this repo

git clone https://github.com/niuchuangnn/SPICE.git
cd SPICE

Data

Prepare datasets of interest as described in dataset.md.

Training

Read the training tutorial for details.

Evaluation

Evaluation of SPICE-Self:

python tools/eval_self.py --config-file configs/stl10/eval.py --weight PATH/TO/MODEL --all 1

Evaluation of SPICE-Semi:

python tools/eval_semi.py --load_path PATH/TO/MODEL --net WideResNet --widen_factor 2 --data_dir PATH/TO/DATA --dataset cifar10 --all 1 

Read the evaluation tutorial for more descriptions about the evaluation and the visualization of learned clusters.

Model Zoo

All trained models in our paper are available as follows.

Dataset Version ACC NMI ARI Model link
STL10 SPICE-Self 91.0 82.0 81.5 Model
SPICE 93.8 87.2 87.0 Model
SPICE-Self* 89.9 80.9 79.7 Model
SPICE* 92.9 86.0 85.3 Model
CIFAR10 SPICE-Self 83.8 73.4 70.5 Model
SPICE 92.6 86.5 85.2 Model
SPICE-Self* 84.9 74.5 71.8 Model
SPICE* 91.7 85.8 83.6 Model
CIFAR100 SPICE-Self 46.8 44.8 29.4 Model
SPICE 53.8 56.7 38.7 Model
SPICE-Self* 48.0 45.0 30.8 Model
SPICE* 58.4 58.3 42.2 Model
ImageNet-10 SPICE-Self 96.9 92.7 93.3 Model
SPICE 96.7 91.7 92.9 Model
ImageNet-Dog SPICE-Self 54.6 49.8 36.2 Model
SPICE 55.4 50.4 34.3 Model
TinyImageNet SPICE-Self 30.5 44.9 16.3 Model
SPICE-Self* 29.2 52.5 14.5 Model

More models based on ResNet18 for both SPICE-Self* and SPICE-Semi*.

Dataset Version ACC NMI ARI Model link
STL10 SPICE-Self* 86.2 75.6 73.2 Model
SPICE* 92.0 85.2 83.6 Model
CIFAR10 SPICE-Self* 84.5 73.9 70.9 Model
SPICE* 91.8 85.0 83.6 Model
CIFAR100 SPICE-Self* 46.8 45.7 32.1 Model
SPICE* 53.5 56.5 40.4 Model

Acknowledgement for reference repos

Citation

@misc{niu2021spice,
      title={SPICE: Semantic Pseudo-labeling for Image Clustering}, 
      author={Chuang Niu and Ge Wang},
      year={2021},
      eprint={2103.09382},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Chuang Niu
Chuang Niu
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021
Learn about Spice.ai with in-depth samples

Samples Learn about Spice.ai with in-depth samples ServerOps - Learn when to run server maintainance during periods of low load Gardener - Intelligent

Spice.ai 16 Mar 23, 2022
The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis.

deep-learning-LAM-avulsion-diagnosis The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis

1 Jan 12, 2022
In the AI for TSP competition we try to solve optimization problems using machine learning.

AI for TSP Competition Goal In the AI for TSP competition we try to solve optimization problems using machine learning. The competition will be hosted

Paulo da Costa 11 Nov 27, 2022
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
A collection of implementations of deep domain adaptation algorithms

Deep Transfer Learning on PyTorch This is a PyTorch library for deep transfer learning. We divide the code into two aspects: Single-source Unsupervise

Yongchun Zhu 647 Jan 03, 2023
Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

JR ROBOTICS 4 Aug 16, 2021
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals

SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals Abstract Sleep apnea (SA) is a common slee

9 Dec 21, 2022
A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning

A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning Website • About • Installation • Using OpenDR

OpenDR 304 Dec 28, 2022
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.

ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie

17 Aug 23, 2022
Vehicle Detection Using Deep Learning and YOLO Algorithm

VehicleDetection Vehicle Detection Using Deep Learning and YOLO Algorithm Dataset take or find vehicle images for create a special dataset for fine-tu

Maryam Boneh 96 Jan 05, 2023
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning This repository is the official implementation of CARE.

ChongjianGE 89 Dec 02, 2022
A curated list of automated deep learning (including neural architecture search and hyper-parameter optimization) resources.

Awesome AutoDL A curated list of automated deep learning related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awe

D-X-Y 2k Dec 30, 2022
Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech"

GradTTS Unofficial Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech" (arxiv) About this repo This is an unoffic

HeyangXue1997 103 Dec 23, 2022
This is my codes that can visualize the psnr image in testing videos.

CVPR2018-Baseline-PSNRplot This is my codes that can visualize the psnr image in testing videos. Future Frame Prediction for Anomaly Detection – A New

Wenhao Yang 12 May 29, 2021
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

[ICLR'21] DARTS-: Robustly Stepping out of Performance Collapse Without Indicators [openreview] Authors: Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun

55 Nov 01, 2022