This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

Related tags

Deep LearningMOTR
Overview

MOTR: End-to-End Multiple-Object Tracking with TRansformer

PWC PWC

This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

Introduction

TL; DR. MOTR is a fully end-to-end multiple-object tracking framework based on Transformer. It directly outputs the tracks within the video sequences without any association procedures.

Abstract. The key challenge in multiple-object tracking (MOT) task is temporal modeling of the object under track. Existing tracking-by-detection methods adopt simple heuristics, such as spatial or appearance similarity. Such methods, in spite of their commonality, are overly simple and insufficient to model complex variations, such as tracking through occlusion. Inherently, existing methods lack the ability to learn temporal variations from data. In this paper, we present MOTR, the first fully end-to-end multiple-object tracking framework. It learns to model the long-range temporal variation of the objects. It performs temporal association implicitly and avoids previous explicit heuristics. Built on Transformer and DETR, MOTR introduces the concept of “track query”. Each track query models the entire track of an object. It is transferred and updated frame-by-frame to perform object detection and tracking, in a seamless manner. Temporal aggregation network combined with multi-frame training is proposed to model the long-range temporal relation. Experimental results show that MOTR achieves state-of-the-art performance.

Main Results

Method Dataset Train Data MOTA IDF1 IDS URL
MOTR MOT16 MOT17+CrowdHuman Val 65.8 67.1 547 model
MOTR MOT17 MOT17+CrowdHuman Val 66.5 67.0 1884 model

Note:

  1. All models of MOTR are trained on 8 NVIDIA Tesla V100 GPUs.
  2. The training time is about 2.5 days for 200 epochs;
  3. The inference speed is about 7.5 FPS for resolution 1536x800;
  4. All models of MOTR are trained with ResNet50 with pre-trained weights on COCO dataset.

Installation

The codebase is built on top of Deformable DETR.

Requirements

  • Linux, CUDA>=9.2, GCC>=5.4

  • Python>=3.7

    We recommend you to use Anaconda to create a conda environment:

    conda create -n deformable_detr python=3.7 pip

    Then, activate the environment:

    conda activate deformable_detr
  • PyTorch>=1.5.1, torchvision>=0.6.1 (following instructions here)

    For example, if your CUDA version is 9.2, you could install pytorch and torchvision as following:

    conda install pytorch=1.5.1 torchvision=0.6.1 cudatoolkit=9.2 -c pytorch
  • Other requirements

    pip install -r requirements.txt
  • Build MultiScaleDeformableAttention

    cd ./models/ops
    sh ./make.sh

Usage

Dataset preparation

Please download MOT17 dataset and CrowdHuman dataset and organize them like FairMOT as following:

.
├── crowdhuman
│   ├── images
│   └── labels_with_ids
├── MOT15
│   ├── images
│   ├── labels_with_ids
│   ├── test
│   └── train
├── MOT17
│   ├── images
│   ├── labels_with_ids

Training and Evaluation

Training on single node

You can download COCO pretrained weights from Deformable DETR. Then training MOTR on 8 GPUs as following:

sh configs/r50_motr_train.sh

Evaluation on MOT15

You can download the pretrained model of MOTR (the link is in "Main Results" session), then run following command to evaluate it on MOT15 train dataset:

sh configs/r50_motr_eval.sh

For visual in demo video, you can enable 'vis=True' in eval.py like:

det.detect(vis=True)

Evaluation on MOT17

You can download the pretrained model of MOTR (the link is in "Main Results" session), then run following command to evaluate it on MOT17 test dataset (submit to server):

sh configs/r50_motr_submit.sh

Citing MOTR

If you find MOTR useful in your research, please consider citing:

@article{zeng2021motr,
  title={MOTR: End-to-End Multiple-Object Tracking with TRansformer},
  author={Zeng, Fangao and Dong, Bin and Wang, Tiancai and Chen, Cheng and Zhang, Xiangyu and Wei, Yichen},
  journal={arXiv preprint arXiv:2105.03247},
  year={2021}
}
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

GarField 88 Nov 07, 2022
Automatic Attendance marker for LMS Practice School Division, BITS Pilani

LMS Attendance Marker Automatic script for lazy people to mark attendance on LMS for Practice School 1. Setup Add your LMS credentials and time slot t

Nihar Bansal 3 Jun 12, 2021
Custom IMDB Dataset is extracted between 2020-2021 and custom distilBERT model is trained for movie success probability prediction

IMDB Success Predictor Project involves Web Scraping custom IMDB data between 2020 and 2021 of 10000 movies and shows sorted by number of votes ,fine

Gautam Diwan 1 Jan 18, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Simulation of Self Driving Car

In this repository, the code to use Udacity's self driving car simulator as a testbed for training an autonomous car are provided.

Shyam Das Shrestha 1 Nov 21, 2021
Using LSTM write Tang poetry

本教程将通过一个示例对LSTM进行介绍。通过搭建训练LSTM网络,我们将训练一个模型来生成唐诗。本文将对该实现进行详尽的解释,并阐明此模型的工作方式和原因。并不需要过多专业知识,但是可能需要新手花一些时间来理解的模型训练的实际情况。为了节省时间,请尽量选择GPU进行训练。

56 Dec 15, 2022
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette 🎶 Imagenette, gentille imagenette, Imagenette, je te plumerai. 🎶 (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196

img_sussifier A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196 Examples How to use install python pip i

41 Sep 30, 2022
DeepStruc is a Conditional Variational Autoencoder which can predict the mono-metallic nanoparticle from a Pair Distribution Function.

ChemRxiv | [Paper] XXX DeepStruc Welcome to DeepStruc, a Deep Generative Model (DGM) that learns the relation between PDF and atomic structure and the

Emil Thyge Skaaning Kjær 13 Aug 01, 2022
Code for ICLR2018 paper: Improving GAN Training via Binarized Representation Entropy (BRE) Regularization - Y. Cao · W Ding · Y.C. Lui · R. Huang

code for "Improving GAN Training via Binarized Representation Entropy (BRE) Regularization" (ICLR2018 paper) paper: https://arxiv.org/abs/1805.03644 G

21 Oct 12, 2020
Fre-GAN: Adversarial Frequency-consistent Audio Synthesis

Fre-GAN Vocoder Fre-GAN: Adversarial Frequency-consistent Audio Synthesis Training: python train.py --config config.json Citation: @misc{kim2021frega

Rishikesh (ऋषिकेश) 93 Dec 17, 2022
PyTorch wrappers for using your model in audacity!

audacitorch This package contains utilities for prepping PyTorch audio models for use in Audacity. More specifically, it provides abstract classes for

Hugo Flores García 130 Dec 14, 2022
Data, model training, and evaluation code for "PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models".

PubTables-1M This repository contains training and evaluation code for the paper "PubTables-1M: Towards a universal dataset and metrics for training a

Microsoft 365 Jan 04, 2023
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Aniruddha Gokhale 15 Dec 02, 2022
[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning Project Page | Paper | Supplemental material #1 | Supplement

KAIST VCLAB 49 Nov 24, 2022
Source code and data in paper "MDFEND: Multi-domain Fake News Detection (CIKM'21)"

MDFEND: Multi-domain Fake News Detection This is an official implementation for MDFEND: Multi-domain Fake News Detection which has been accepted by CI

Rich 40 Dec 18, 2022
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http

Guanghan Ning 83 Nov 21, 2022
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022