This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

Related tags

Deep LearningMOTR
Overview

MOTR: End-to-End Multiple-Object Tracking with TRansformer

PWC PWC

This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

Introduction

TL; DR. MOTR is a fully end-to-end multiple-object tracking framework based on Transformer. It directly outputs the tracks within the video sequences without any association procedures.

Abstract. The key challenge in multiple-object tracking (MOT) task is temporal modeling of the object under track. Existing tracking-by-detection methods adopt simple heuristics, such as spatial or appearance similarity. Such methods, in spite of their commonality, are overly simple and insufficient to model complex variations, such as tracking through occlusion. Inherently, existing methods lack the ability to learn temporal variations from data. In this paper, we present MOTR, the first fully end-to-end multiple-object tracking framework. It learns to model the long-range temporal variation of the objects. It performs temporal association implicitly and avoids previous explicit heuristics. Built on Transformer and DETR, MOTR introduces the concept of “track query”. Each track query models the entire track of an object. It is transferred and updated frame-by-frame to perform object detection and tracking, in a seamless manner. Temporal aggregation network combined with multi-frame training is proposed to model the long-range temporal relation. Experimental results show that MOTR achieves state-of-the-art performance.

Main Results

Method Dataset Train Data MOTA IDF1 IDS URL
MOTR MOT16 MOT17+CrowdHuman Val 65.8 67.1 547 model
MOTR MOT17 MOT17+CrowdHuman Val 66.5 67.0 1884 model

Note:

  1. All models of MOTR are trained on 8 NVIDIA Tesla V100 GPUs.
  2. The training time is about 2.5 days for 200 epochs;
  3. The inference speed is about 7.5 FPS for resolution 1536x800;
  4. All models of MOTR are trained with ResNet50 with pre-trained weights on COCO dataset.

Installation

The codebase is built on top of Deformable DETR.

Requirements

  • Linux, CUDA>=9.2, GCC>=5.4

  • Python>=3.7

    We recommend you to use Anaconda to create a conda environment:

    conda create -n deformable_detr python=3.7 pip

    Then, activate the environment:

    conda activate deformable_detr
  • PyTorch>=1.5.1, torchvision>=0.6.1 (following instructions here)

    For example, if your CUDA version is 9.2, you could install pytorch and torchvision as following:

    conda install pytorch=1.5.1 torchvision=0.6.1 cudatoolkit=9.2 -c pytorch
  • Other requirements

    pip install -r requirements.txt
  • Build MultiScaleDeformableAttention

    cd ./models/ops
    sh ./make.sh

Usage

Dataset preparation

Please download MOT17 dataset and CrowdHuman dataset and organize them like FairMOT as following:

.
├── crowdhuman
│   ├── images
│   └── labels_with_ids
├── MOT15
│   ├── images
│   ├── labels_with_ids
│   ├── test
│   └── train
├── MOT17
│   ├── images
│   ├── labels_with_ids

Training and Evaluation

Training on single node

You can download COCO pretrained weights from Deformable DETR. Then training MOTR on 8 GPUs as following:

sh configs/r50_motr_train.sh

Evaluation on MOT15

You can download the pretrained model of MOTR (the link is in "Main Results" session), then run following command to evaluate it on MOT15 train dataset:

sh configs/r50_motr_eval.sh

For visual in demo video, you can enable 'vis=True' in eval.py like:

det.detect(vis=True)

Evaluation on MOT17

You can download the pretrained model of MOTR (the link is in "Main Results" session), then run following command to evaluate it on MOT17 test dataset (submit to server):

sh configs/r50_motr_submit.sh

Citing MOTR

If you find MOTR useful in your research, please consider citing:

@article{zeng2021motr,
  title={MOTR: End-to-End Multiple-Object Tracking with TRansformer},
  author={Zeng, Fangao and Dong, Bin and Wang, Tiancai and Chen, Cheng and Zhang, Xiangyu and Wei, Yichen},
  journal={arXiv preprint arXiv:2105.03247},
  year={2021}
}
Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection

SAGA Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection Please refer to the Jupyter notebook (Example.ipynb) for an example of using t

9 Dec 28, 2022
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5

AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap

5 Nov 10, 2022
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe

Patrick Kidger 717 Jan 09, 2023
Bilinear attention networks for visual question answering

Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit

Jin-Hwa Kim 506 Nov 29, 2022
Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORAL)

Scribble-Supervised LiDAR Semantic Segmentation Dataset and code release for the paper Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORA

102 Dec 25, 2022
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
GAN-generated image detection based on CNNs

GAN-image-detection This repository contains a GAN-generated image detector developed to distinguish real images from synthetic ones. The detector is

Image and Sound Processing Lab 17 Dec 15, 2022
Scenarios, tutorials and demos for Autonomous Driving

The Autonomous Driving Cookbook (Preview) NOTE: This project is developed and being maintained by Project Road Runner at Microsoft Garage. This is cur

Microsoft 2.1k Jan 02, 2023
Neural Nano-Optics for High-quality Thin Lens Imaging

Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H

Ethan Tseng 39 Dec 05, 2022
Based on Stockfish neural network(similar to LcZero)

MarcoEngine Marco Engine - interesnaya neyronnaya shakhmatnaya set', kotoraya ispol'zuyet metod samoobucheniya(dostizheniye khoroshoy igy putem proboy

Marcus Kemaul 4 Mar 12, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Vide

Jonas Wu 232 Dec 29, 2022
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
CSPML (crystal structure prediction with machine learning-based element substitution)

CSPML (crystal structure prediction with machine learning-based element substitution) CSPML is a unique methodology for the crystal structure predicti

8 Dec 20, 2022
🔥 TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement"

🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ? If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv

3.6k Dec 26, 2022
A collection of easy-to-use, ready-to-use, interesting deep neural network models

Interesting and reproducible research works should be conserved. This repository wraps a collection of deep neural network models into a simple and un

Aria Ghora Prabono 16 Jun 16, 2022
This repository contains the map content ontology used in narrative cartography

Narrative-cartography-ontology This repository contains the map content ontology used in narrative cartography, which is associated with a submission

Weiming Huang 0 Oct 31, 2021
ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN

ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN CVPR 2020 (Oral); Pose and Appearance Attributes Transfer;

Men Yifang 400 Dec 29, 2022
A highly efficient, fast, powerful and light-weight anime downloader and streamer for your favorite anime.

AnimDL - Download & Stream Your Favorite Anime AnimDL is an incredibly powerful tool for downloading and streaming anime. Core features Abuses the dev

KR 759 Jan 08, 2023