Performant, differentiable reinforcement learning

Related tags

Deep Learningdeluca
Overview

deluca

Performant, differentiable reinforcement learning

Notes

  1. This is pre-alpha software and is undergoing a number of core changes. Updates to follow.
  2. Please see the examples for guidance on how to use deluca

pypi pyversions security: bandit Code style: black License: Apache 2.0

build coverage Documentation Status doc_coverage

deluca

Comments
  • Exception error during installing deluca

    Exception error during installing deluca

    Hi.

    I am trying to install deluca and I get an Exception error. I am using

    Ubuntu 64 on a virtual machine Pycharm CE 2021.2, Python 3.8 pip 212.1.2

    I tried to install deluca with the package manager in Pycharm, the terminal in Pycharm and also the Ubuntu terminal. The error is the same. Note that I can install other normal packages like Numpy, Scipy, etc with no problem. Thanks in advance and I am looking forward to using this amazing package!

    pip install deluca
    Collecting deluca
       Using cached deluca-0.0.17-py3-none-any.whl (52 kB)
    Collecting flax
       Using cached flax-0.3.4-py3-none-any.whl (183 kB)
    Collecting brax
       Using cached brax-0.0.4-py3-none-any.whl (117 kB)
    Processing
    ./.cache/pip/wheels/78/ae/07/bd3adac873fa80efc909c09331831905ac657dbb8d1278235e/jax-0.2.19-py3-none-any.whl
    Collecting optax
       Using cached optax-0.0.9-py3-none-any.whl (118 kB)
    Collecting scipy
       Using cached
    scipy-1.7.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (28.4 MB)
    Collecting numpy
       Using cached
    numpy-1.21.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
    (15.8 MB)
    Collecting matplotlib
       Using cached matplotlib-3.4.3-cp38-cp38-manylinux1_x86_64.whl (10.3 MB)
    Collecting msgpack
       Using cached msgpack-1.0.2-cp38-cp38-manylinux1_x86_64.whl (302 kB)
    Collecting grpcio
       Using cached grpcio-1.39.0-cp38-cp38-manylinux2014_x86_64.whl (4.3 MB)
    Collecting clu
       Using cached clu-0.0.6-py3-none-any.whl (77 kB)
    Collecting gym
       Using cached gym-0.19.0.tar.gz (1.6 MB)
    Collecting absl-py
       Using cached absl_py-0.13.0-py3-none-any.whl (132 kB)
    Collecting tfp-nightly[jax]<=0.13.0.dev20210422
       Using cached tfp_nightly-0.13.0.dev20210422-py2.py3-none-any.whl (5.3 MB)
    Collecting jaxlib
       Using cached jaxlib-0.1.70-cp38-none-manylinux2010_x86_64.whl (46.9 MB)
    Collecting dataclasses
       Using cached dataclasses-0.6-py3-none-any.whl (14 kB)
    Collecting opt-einsum
       Using cached opt_einsum-3.3.0-py3-none-any.whl (65 kB)
    Collecting chex>=0.0.4
       Using cached chex-0.0.8-py3-none-any.whl (57 kB)
    Requirement already satisfied: pillow>=6.2.0 in
    /usr/lib/python3/dist-packages (from matplotlib->flax->deluca) (7.0.0)
    Collecting cycler>=0.10
       Using cached cycler-0.10.0-py2.py3-none-any.whl (6.5 kB)
    Collecting pyparsing>=2.2.1
       Using cached pyparsing-2.4.7-py2.py3-none-any.whl (67 kB)
    Collecting kiwisolver>=1.0.1
       Using cached kiwisolver-1.3.1-cp38-cp38-manylinux1_x86_64.whl (1.2 MB)
    Requirement already satisfied: python-dateutil>=2.7 in
    /usr/lib/python3/dist-packages (from matplotlib->flax->deluca) (2.7.3)
    Requirement already satisfied: six>=1.5.2 in
    /usr/lib/python3/dist-packages (from grpcio->brax->deluca) (1.14.0)
    Collecting tensorflow-datasets
       Using cached tensorflow_datasets-4.4.0-py3-none-any.whl (4.0 MB)
    Collecting packaging
       Using cached packaging-21.0-py3-none-any.whl (40 kB)
    Collecting ml-collections
       Using cached ml_collections-0.1.0-py3-none-any.whl (88 kB)
    Collecting tensorflow
       Downloading tensorflow-2.6.0-cp38-cp38-manylinux2010_x86_64.whl
    (458.4 MB)
          |▋                               | 8.4 MB 16 kB/s eta
    7:44:54ERROR: Exception:
    Traceback (most recent call last):
       File
    "/usr/share/python-wheels/urllib3-1.25.8-py2.py3-none-any.whl/urllib3/response.py",
    line 425, in _error_catcher
         yield
       File
    "/usr/share/python-wheels/urllib3-1.25.8-py2.py3-none-any.whl/urllib3/response.py",
    line 507, in read
         data = self._fp.read(amt) if not fp_closed else b""
       File
    "/usr/share/python-wheels/CacheControl-0.12.6-py2.py3-none-any.whl/cachecontrol/filewrapper.py",
    line 62, in read
         data = self.__fp.read(amt)
       File "/usr/lib/python3.8/http/client.py", line 455, in read
         n = self.readinto(b)
       File "/usr/lib/python3.8/http/client.py", line 499, in readinto
         n = self.fp.readinto(b)
       File "/usr/lib/python3.8/socket.py", line 669, in readinto
         return self._sock.recv_into(b)
       File "/usr/lib/python3.8/ssl.py", line 1241, in recv_into
         return self.read(nbytes, buffer)
       File "/usr/lib/python3.8/ssl.py", line 1099, in read
         return self._sslobj.read(len, buffer)
    socket.timeout: The read operation timed out
    
    During handling of the above exception, another exception occurred:
    
    Traceback (most recent call last):
       File
    "/usr/lib/python3/dist-packages/pip/_internal/cli/base_command.py", line
    186, in _main
         status = self.run(options, args)
       File
    "/usr/lib/python3/dist-packages/pip/_internal/commands/install.py", line
    357, in run
         resolver.resolve(requirement_set)
       File
    "/usr/lib/python3/dist-packages/pip/_internal/legacy_resolve.py", line
    177, in resolve
         discovered_reqs.extend(self._resolve_one(requirement_set, req))
       File
    "/usr/lib/python3/dist-packages/pip/_internal/legacy_resolve.py", line
    333, in _resolve_one
         abstract_dist = self._get_abstract_dist_for(req_to_install)
       File
    "/usr/lib/python3/dist-packages/pip/_internal/legacy_resolve.py", line
    282, in _get_abstract_dist_for
         abstract_dist = self.preparer.prepare_linked_requirement(req)
       File
    "/usr/lib/python3/dist-packages/pip/_internal/operations/prepare.py",
    line 480, in prepare_linked_requirement
         local_path = unpack_url(
       File
    "/usr/lib/python3/dist-packages/pip/_internal/operations/prepare.py",
    line 282, in unpack_url
         return unpack_http_url(
       File
    "/usr/lib/python3/dist-packages/pip/_internal/operations/prepare.py",
    line 158, in unpack_http_url
         from_path, content_type = _download_http_url(
       File
    "/usr/lib/python3/dist-packages/pip/_internal/operations/prepare.py",
    line 303, in _download_http_url
         for chunk in download.chunks:
       File "/usr/lib/python3/dist-packages/pip/_internal/utils/ui.py", line
    160, in iter
         for x in it:
       File "/usr/lib/python3/dist-packages/pip/_internal/network/utils.py",
    line 15, in response_chunks
         for chunk in response.raw.stream(
       File
    "/usr/share/python-wheels/urllib3-1.25.8-py2.py3-none-any.whl/urllib3/response.py",
    line 564, in stream
         data = self.read(amt=amt, decode_content=decode_content)
       File
    "/usr/share/python-wheels/urllib3-1.25.8-py2.py3-none-any.whl/urllib3/response.py",
    line 529, in read
         raise IncompleteRead(self._fp_bytes_read, self.length_remaining)
       File "/usr/lib/python3.8/contextlib.py", line 131, in __exit__
         self.gen.throw(type, value, traceback)
       File
    "/usr/share/python-wheels/urllib3-1.25.8-py2.py3-none-any.whl/urllib3/response.py",
    line 430, in _error_catcher
         raise ReadTimeoutError(self._pool, None, "Read timed out.")
    urllib3.exceptions.ReadTimeoutError:
    HTTPSConnectionPool(host='files.pythonhosted.org', port=443): Read timed
    out.
    
    opened by FarnazAdib 4
  • Internal change

    Internal change

    Internal change

    FUTURE_COPYBARA_INTEGRATE_REVIEW=https://github.com/google/deluca/pull/57 from google:inverse_map baa4932444495538d91151653165cdcb386b52fc

    opened by copybara-service[bot] 0
  • Internal change

    Internal change

    Internal change

    FUTURE_COPYBARA_INTEGRATE_REVIEW=https://github.com/google/deluca/pull/57 from google:inverse_map baa4932444495538d91151653165cdcb386b52fc

    opened by copybara-service[bot] 0
  • Internal change

    Internal change

    Internal change

    FUTURE_COPYBARA_INTEGRATE_REVIEW=https://github.com/google/deluca/pull/57 from google:inverse_map baa4932444495538d91151653165cdcb386b52fc

    cla: yes 
    opened by copybara-service[bot] 0
  • Internal change

    Internal change

    Internal change

    FUTURE_COPYBARA_INTEGRATE_REVIEW=https://github.com/google/deluca/pull/57 from google:inverse_map baa4932444495538d91151653165cdcb386b52fc

    cla: yes 
    opened by copybara-service[bot] 0
  • Consider dependency on OpenAI Gym

    Consider dependency on OpenAI Gym

    • Not clear what the benefits of compatibility are since existing agents that work on OpenAI Gym environments have no guarantee of working on deluca environments
    • OpenAI Gym bundles environment with initialization and task. Not necessarily something we want to do.
    opened by danielsuo 0
  • Changes to _adaptive.py

    Changes to _adaptive.py

    Hello! I made some modifications to AdaGPC (in _adaptive.py). In the existing implementation, GPC outperforms AdaGPC in the known LDS setting, which is the opposite of what one should expect. Based on some preliminary experiments, I believe AdaGPC is now working properly (at least in the known dynamics version). (I also made some miscellaneous changes in other files, e.g., to the imports in some of the agent files -- I think there might have been some file restructuring across different versions of deluca, but the imports were not updated to reflect this change, causing some errors at runtime.) Please let me know if you have any questions/concerns. Thanks!

    opened by simran135 1
  • [JAX] Avoid private implementation detail _ScalarMeta.

    [JAX] Avoid private implementation detail _ScalarMeta.

    [JAX] Avoid private implementation detail _ScalarMeta.

    The closest public approximation to type(jnp.float32) is type[Any]. Nothing is ever actually an instance of one of these types, either (they build DeviceArrays if instantiated.)

    opened by copybara-service[bot] 0
  • [JAX] Avoid private implementation detail _ScalarMeta.

    [JAX] Avoid private implementation detail _ScalarMeta.

    [JAX] Avoid private implementation detail _ScalarMeta.

    The closest public approximation to type(jnp.float32) is type[Any]. Nothing is ever actually an instance of one of these types, either (they build DeviceArrays if instantiated.)

    opened by copybara-service[bot] 0
  • Internal change

    Internal change

    Internal change

    FUTURE_COPYBARA_INTEGRATE_REVIEW=https://github.com/google/deluca/pull/57 from google:inverse_map baa4932444495538d91151653165cdcb386b52fc

    opened by copybara-service[bot] 0
  • Implementation of drc

    Implementation of drc

    Hi

    Thanks for providing this interesting package.

    I am trying to test drc on a simple setup and I notice that the current implementation of drc does not work. I mean when I try it for a simple partially observable linear system with A = np.array([[1.0 0.95], [0.0, -0.9]]), B = np.array([[0.0], [1.0]]) C = np.array([[1.0, 0]]) Q , R = I gaussian process noise, zero observation noise which is open loop stable, the controller acts like a zero controller. I tried to get a different response by setting the hyperparameters but they are mostly the same. Then I looked at the implementation at the deluca github and I noticed that the counterfactual cost is not defined correctly (if I am not wrong). According to Algorithm 1 in [1], we need to use M_t to compute y_t (which depends on the previous controls (u) using again M_t) but in the implementation, the previous controls based on M_{t-i} are used. Anyway, I implemented the algorithm using M_t but what I get after the simulation is either close to zero control or an unstable one.

    I was wondering if you have any code example for the DRC algorithm that works? [1] Simchowitz, Max and Singh, Karan and Hazan, Elad, "Improper learning for non-stochastic control", COLT 2020.

    Thanks a lot, Sincerely, Farnaz

    opened by FarnazAdib 4
Releases(v0.0.17)
Owner
Google
Google ❤️ Open Source
Google
FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data

FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data, a relatively complete set of integrated multi-source data download terminal software fast is developed. The softw

ChangChuntao 23 Dec 31, 2022
Face uncertainty quantification or estimation using PyTorch.

Face-uncertainty-pytorch This is a demo code of face uncertainty quantification or estimation using PyTorch. The uncertainty of face recognition is af

Kaen 3 Sep 16, 2022
Image-retrieval-baseline - MUGE Multimodal Retrieval Baseline

MUGE Multimodal Retrieval Baseline This repo is implemented based on the open_cl

47 Dec 16, 2022
Code for paper "Learning to Reweight Examples for Robust Deep Learning"

learning-to-reweight-examples Code for paper Learning to Reweight Examples for Robust Deep Learning. [arxiv] Environment We tested the code on tensorf

Uber Research 261 Jan 01, 2023
Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

TOQ-Nets-PyTorch-Release Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets). Temporal and Object Quantification Net

Zhezheng Luo 9 Jun 30, 2022
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
Sharing of contents on mitochondrial encounter networks

mito-network-sharing Sharing of contents on mitochondrial encounter networks Required: R with igraph, brainGraph, ggplot2, and XML libraries; igraph l

Stochastic Biology Group 0 Oct 01, 2021
PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Salesforce 1.3k Dec 31, 2022
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 02, 2023
Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback

CoSMo.pytorch Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback, Seungmin Lee*, Dongwan Kim*, Bohyung

Seung Min Lee 54 Dec 08, 2022
ComputerVision - This repository aims at realized easy network architecture

ComputerVision This repository aims at realized easy network architecture Colori

DongDong 4 Dec 14, 2022
StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation

StyleGAN2 with adaptive discriminator augmentation (ADA) — Official TensorFlow implementation Training Generative Adversarial Networks with Limited Da

NVIDIA Research Projects 1.7k Dec 29, 2022
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

AI Summer 962 Dec 23, 2022
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding his way.

GuidEye A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding h

Munal Jain 0 Aug 09, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Code for the Convolutional Vision Transformer (ConViT)

ConViT : Vision Transformers with Convolutional Inductive Biases This repository contains PyTorch code for ConViT. It builds on code from the Data-Eff

Facebook Research 418 Jan 06, 2023