A Python library for Deep Probabilistic Modeling

Overview

MIT license PyPI version

Logo

Abstract

DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows and their possible combinations for probabilistic inference. Some models are implemented using PyTorch for fast training and inference on GPUs.

Features

  • Inference algorithms for SPNs. 1 4
  • Learning algorithms for SPNs structure. 1 2 3 4
  • Chow-Liu Trees (CLT) as SPN leaves. 11 12
  • Batch Expectation-Maximization (EM) for SPNs with arbitrarily leaves. 13 14
  • Structural marginalization and pruning algorithms for SPNs.
  • High-order moments computation for SPNs.
  • JSON I/O operations for SPNs and CLTs. 4
  • Plotting operations based on NetworkX for SPNs and CLTs. 4
  • Randomized And Tensorized SPNs (RAT-SPNs) using PyTorch. 5
  • Masked Autoregressive Flows (MAFs) using PyTorch. 6
  • Real Non-Volume-Preserving (RealNVP) and Non-linear Independent Component Estimation (NICE) flows. 7 8
  • Deep Generalized Convolutional SPNs (DGC-SPNs) using PyTorch. 10

The collection of implemented models is summarized in the following table. The supported data dimensionality for each model is showed in the Input Dimensionality column. Moreover, the Supervised column tells which model is suitable for a supervised learning task, other than density estimation task.

Model Description Input Dimensionality Supervised
Binary-CLT Binary Chow-Liu Tree (CLT) D
SPN Vanilla Sum-Product Network, using LearnSPN D
RAT-SPN Randomized and Tensorized Sum-Product Network D
DGC-SPN Deep Generalized Convolutional Sum-Product Network (1, D, D); (3, D, D)
MAF Masked Autoregressive Flow D
NICE Non-linear Independent Components Estimation Flow (1, H, W); (3, H, W)
RealNVP Real-valued Non-Volume-Preserving Flow (1, H, W); (3, H, W)

Installation & Documentation

The library can be installed either from PIP repository or by source code.

# Install from PIP repository
pip install deeprob-kit
# Install from `main` git branch
pip install -e git+https://github.com/deeprob-org/[email protected]#egg=deeprob-kit

The documentation is generated automatically by Sphinx (with Read-the-Docs theme), and it's hosted using GitHub Pages at deeprob-kit.

Datasets and Experiments

A collection of 29 binary datasets, which most of them are used in Probabilistic Circuits literature, can be found at UCLA-StarAI-Binary-Datasets.

Moreover, a collection of 5 continuous datasets, commonly present in works regarding Normalizing Flows, can be found at MAF-Continuous-Datasets.

After downloading them, the datasets must be stored in the experiments/datasets directory to be able to run the experiments (and Unit Tests). The experiments scripts are available in the experiments directory and can be launched using the command line by specifying the dataset and hyper-parameters.

Code Examples

A collection of code examples can be found in the examples directory. However, the examples are not intended to produce state-of-the-art results, but only to present the library.

The following table contains a description about them and a code complexity ranging from one to three stars. The Complexity column consists of a measure that roughly represents how many features of the library are used, as well as the expected time required to run the script.

Example Description Complexity
naive_model.py Learn, evaluate and print statistics about a naive factorized model.
spn_plot.py Instantiate, prune, marginalize and plot some SPNs.
clt_plot.py Learn a Binary CLT and plot it.
spn_moments.py Instantiate and compute moments statistics about the random variables.
sklearn_interface.py Learn and evaluate a SPN using the scikit-learn interface.
spn_custom_leaf.py Learn, evaluate and serialize a SPN with a user-defined leaf distribution.
clt_to_spn.py Learn a Binary CLT, convert it to a structured decomposable SPN and plot it.
spn_clt_em.py Instantiate a SPN with Binary CLTs, apply EM algorithm and sample some data.
clt_queries.py Learn a Binary CLT, plot it, run some queries and sample some data.
ratspn_mnist.py Train and evaluate a RAT-SPN on MNIST.
dgcspn_olivetti.py Train, evaluate and complete some images with DGC-SPN on Olivetti-Faces.
dgcspn_mnist.py Train and evaluate a DGC-SPN on MNIST.
nvp1d_moons.py Train and evaluate a 1D RealNVP on Moons dataset.
maf_cifar10.py Train and evaluate a MAF on CIFAR10.
nvp2d_mnist.py Train and evaluate a 2D RealNVP on MNIST.
nvp2d_cifar10.py Train and evaluate a 2D RealNVP on CIFAR10.
spn_latent_mnist.py Train and evaluate a SPN on MNIST using the features extracted by an autoencoder.

Related Repositories

References

1. Peharz et al. On Theoretical Properties of Sum-Product Networks. AISTATS (2015).

2. Poon and Domingos. Sum-Product Networks: A New Deep Architecture. UAI (2011).

3. Molina, Vergari et al. Mixed Sum-Product Networks: A Deep Architecture for Hybrid Domains. AAAI (2018).

4. Molina, Vergari et al. SPFLOW : An easy and extensible library for deep probabilistic learning using Sum-Product Networks. CoRR (2019).

5. Peharz et al. Probabilistic Deep Learning using Random Sum-Product Networks. UAI (2020).

6. Papamakarios et al. Masked Autoregressive Flow for Density Estimation. NeurIPS (2017).

7. Dinh et al. Density Estimation using RealNVP. ICLR (2017).

8. Dinh et al. NICE: Non-linear Independent Components Estimation. ICLR (2015).

9. Papamakarios, Nalisnick et al. Normalizing Flows for Probabilistic Modeling and Inference. JMLR (2021).

10. Van de Wolfshaar and Pronobis. Deep Generalized Convolutional Sum-Product Networks for Probabilistic Image Representations. PGM (2020).

11. Rahman et al. Cutset Networks: A Simple, Tractable, and Scalable Approach for Improving the Accuracy of Chow-Liu Trees. ECML-PKDD (2014).

12. Di Mauro, Gala et al. Random Probabilistic Circuits. UAI (2021).

13. Desana and Schnörr. Learning Arbitrary Sum-Product Network Leaves with Expectation-Maximization. CoRR (2016).

14. Peharz et al. Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits. ICML (2020).

Owner
DeeProb-org
DeeProb-org
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 01, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning Paper | Poster | Supplementary The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this

Tong Zekun 28 Jan 08, 2023
Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

DTI-Sprites Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper Check out our paper and webpage for deta

40 Dec 22, 2022
Low-code/No-code approach for deep learning inference on devices

EzEdgeAI A concept project that uses a low-code/no-code approach to implement deep learning inference on devices. It provides a componentized framewor

On-Device AI Co., Ltd. 7 Apr 05, 2022
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022
Author Disambiguation using Knowledge Graph Embeddings with Literals

Author Name Disambiguation with Knowledge Graph Embeddings using Literals This is the repository for the master thesis project on Knowledge Graph Embe

12 Oct 19, 2022
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Ceph.

Project Aquarium Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Cep

Aquarist Labs 73 Jul 21, 2022
Pytorch Implementation of Various Point Transformers

Pytorch Implementation of Various Point Transformers Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Men

Neil You 434 Dec 30, 2022
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
PyTorch implementation of Constrained Policy Optimization

PyTorch implementation of Constrained Policy Optimization (CPO) This repository has a simple to understand and use implementation of CPO in PyTorch. A

Sapana Chaudhary 25 Dec 08, 2022
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte Computer Vision Lab

Kai Zhang 804 Jan 08, 2023
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

Yijia Weng 96 Dec 07, 2022
pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

Open Source Economics 9 May 11, 2022
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Dec 31, 2022
Model Agnostic Interpretability for Multiple Instance Learning

MIL Model Agnostic Interpretability This repo contains the code for "Model Agnostic Interpretability for Multiple Instance Learning". Overview Executa

Joe Early 10 Dec 17, 2022
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.

Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p

DIKSHA DESWAL 1 Dec 29, 2021