This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive Selective Coding)

Related tags

Deep LearningHCSC
Overview

HCSC: Hierarchical Contrastive Selective Coding

This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive Selective Coding), whose details are in this paper.

HCSC is an effective and efficient method to pre-train image encoders in a self-supervised fashion. In general, this method seeks to learn image representations with hierarchical semantic structures. It utilizes hierarchical K-means to derive hierarchical prototypes, and these prototypes represent the hierarchical semantics underlying the data. On such basis, we perform Instance-wise and Prototypical Contrastive Selective Coding to inject the information within hierarchical prototypes into image representations. HCSC has achieved SOTA performance on the self-supervised pre-training of CNNs (e.g., ResNet-50), and we will further study its potential on pre-training Vision Transformers.

Roadmap

  • [2022/02/01] The initial release! We release all source code for pre-training and downstream evaluation. We release three pre-trained ResNet-50 models: 200 epochs (single-crop), 200 epochs (multi-crop) and 400 epochs (single-crop, batch size: 256).

TODO

  • Finish the pre-training of 400 epochs ResNet-50 models (multi-crop) and release.
  • Finish the pre-training of 800 epochs ResNet-50 models (single- & multi-crop) and release.
  • Support Vision Transformer backbones.
  • Pre-train Vision Transformers with HCSC and release model weights under various configurations.

Model Zoo

We will continually release our pre-trained HCSC model weights and corresponding training configs. The current finished ones are as follows:

Backbone Method Crop Epoch Batch size Lincls top-1 Acc. KNN top-1 Acc. url config
ResNet-50 HCSC Single 200 256 69.2 60.7 model config
ResNet-50 HCSC Multi 200 256 73.3 66.6 model config
ResNet-50 HCSC Single 400 256 70.6 63.4 model config

Installation

Use following command to install dependencies (python3.7 with pip installed):

pip3 install -r requirement.txt

If having trouble installing PyTorch, follow the original guidance (https://pytorch.org/). Notably, the code is tested with cudatoolkit version 10.2.

Pre-training on ImageNet

Download ImageNet dataset under [ImageNet Folder]. Go to the path "[ImageNet Folder]/val" and use this script to build sub-folders.

To train single-crop HCSC on 8 Tesla-V100-32GB GPUs for 200 epochs, run:

python3 -m torch.distributed.launch --master_port [your port] --nproc_per_node=8 \
pretrain.py [your ImageNet Folder]

To train multi-crop HCSC on 8 Tesla-V100-32GB GPUs for 200 epochs, run:

python3 -m torch.distributed.launch --master_port [your port] --nproc_per_node=8 \
pretrain.py --multicrop [your ImageNet Folder]

Downstream Evaluation

Evaluation: Linear Classification on ImageNet

With a pre-trained model, to train a supervised linear classifier with all available GPUs, run:

python3 eval_lincls_imagenet.py --data [your ImageNet Folder] \
--dist-url tcp://localhost:10001 --world-size 1 --rank 0 \
--pretrained [your pre-trained model (example:out.pth)]

Evaluation: KNN Evaluation on ImageNet

To reproduce the KNN evaluation results with a pre-trained model using a single GPU, run:

python3 -m torch.distributed.launch --master_port [your port] --nproc_per_node=1 eval_knn.py \
--checkpoint_key state_dict \
--pretrained [your pre-trained model] \
--data [your ImageNet Folder]

Evaluation: Semi-supervised Learning on ImageNet

To fine-tune a pre-trained model with 1% or 10% ImageNet labels with 8 Tesla-V100-32GB GPUs, run:

1% of labels:

python3 -m torch.distributed.launch --nproc_per_node 8 --master_port [your port] eval_semisup.py \
--labels_perc 1 \
--pretrained [your pretrained weights] \
[your ImageNet Folder]

10% of labels:

python3 -m torch.distributed.launch --nproc_per_node 8 --master_port [your port] eval_semisup.py \
--labels_perc 10 \
--pretrained [your pretrained weights] \
[your ImageNet Folder]

Evaluation: Transfer Learning - Classification on VOC / Places205

VOC

1. Download the VOC dataset.
2. Finetune and evaluate on PASCAL VOC (with a single GPU):
cd voc_cls/ 
python3 main.py --data [your voc data folder] \
--pretrained [your pretrained weights]

Places205

1. Download the Places205 dataset (resized 256x256 version)
2. Linear Classification on Places205 (with all available GPUs):
python3 eval_lincls_places.py --data [your places205 data folder] \
--data-url tcp://localhost:10001 \
--pretrained [your pretrained weights]

Evaluation: Transfer Learning - Object Detection on VOC / COCO

1. Download VOC and COCO Dataset (under ./detection/datasets).

2. Install detectron2.

3. Convert a pre-trained model to the format of detectron2:

cd detection
python3 convert-pretrain-to-detectron2.py [your pretrained weight] out.pkl

4. Train on PASCAL VOC/COCO:

Finetune and evaluate on VOC (with 8 Tesla-V100-32GB GPUs):
cd detection
python3 train_net.py --config-file ./configs/pascal_voc_R_50_C4_24k_hcsc.yaml \
--num-gpus 8 MODEL.WEIGHTS out.pkl
Finetune and evaluate on COCO (with 8 Tesla-V100-32GB GPUs):
cd detection
python3 train_net.py --config-file ./configs/coco_R_50_C4_2x_hcsc.yaml \
--num-gpus 8 MODEL.WEIGHTS out.pkl

Evaluation: Clustering Evaluation on ImageNet

To reproduce the clustering evaluation results with a pre-trained model using all available GPUs, run:

python3 eval_clustering.py --dist-url tcp://localhost:10001 \
--multiprocessing-distributed --world-size 1 --rank 0 \
--num-cluster [target num cluster] \
--pretrained [your pretrained model weights] \
[your ImageNet Folder]

In the experiments of our paper, we set --num-cluster as 25000 and 1000.

License

This repository is released under the MIT license as in the LICENSE file.

Citation

If you find this repository useful, please kindly consider citing the following paper:

@article{guo2022hcsc,
  title={HCSC: Hierarchical Contrastive Selective Coding},
  author={Guo, Yuanfan and Xu, Minghao and Li, Jiawen and Ni, Bingbing and Zhu, Xuanyu and Sun, Zhenbang and Xu, Yi},
  journal={arXiv preprint arXiv:2202.00455},
  year={2022}
}
Owner
YUANFAN GUO
From SJTU. Working on self-supervised pre-training.
YUANFAN GUO
MMRazor: a model compression toolkit for model slimming and AutoML

Documentation: https://mmrazor.readthedocs.io/ English | 简体中文 Introduction MMRazor is a model compression toolkit for model slimming and AutoML, which

OpenMMLab 899 Jan 02, 2023
Contrastive Learning Inverts the Data Generating Process

Official code to reproduce the results and data presented in the paper Contrastive Learning Inverts the Data Generating Process.

71 Nov 25, 2022
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
Official Pytorch Implementation for Splicing ViT Features for Semantic Appearance Transfer presenting Splice

Splicing ViT Features for Semantic Appearance Transfer [Project Page] Splice is a method for semantic appearance transfer, as described in Splicing Vi

Omer Bar Tal 253 Jan 06, 2023
LSTMs (Long Short Term Memory) RNN for prediction of price trends

Price Prediction with Recurrent Neural Networks LSTMs BTC-USD price prediction with deep learning algorithm. Artificial Neural Networks specifically L

5 Nov 12, 2021
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation This is a demo implementation of BYOL for Audio (BYOL-A), a self-sup

NTT Communication Science Laboratories 160 Jan 04, 2023
TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020)

TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020) About The goal of our research problem is illustrated below: give

59 Dec 09, 2022
OpenVINO黑客松比赛项目

Window_Guard OpenVINO黑客松比赛项目 英文名称:Window_Guard 中文名称:窗口卫士 硬件 树莓派4B 8G版本 一个磁石开关 USB摄像头(MP4视频文件也可以) 软件(库) OpenVINO RPi 使用方法 本项目使用的OPenVINO是是2021.3版本,并使用了

Tango 6 Jul 04, 2021
This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murder rates etc.

Gun-Laws-Classifier This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murde

Awais Saleem 1 Jan 20, 2022
This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

21 Dec 22, 2022
🏅 The Most Comprehensive List of Kaggle Solutions and Ideas 🏅

🏅 Collection of Kaggle Solutions and Ideas 🏅

Farid Rashidi 2.3k Jan 08, 2023
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
Virtual hand gesture mouse using a webcam

NonMouse 日本語のREADMEはこちら This is an application that allows you to use your hand itself as a mouse. The program uses a web camera to recognize your han

Yuki Takeyama 55 Jan 01, 2023
The open source code of SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation.

SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation(ICPR 2020) Overview This code is for the paper: Spatial Attention U-Net for Retinal V

Changlu Guo 151 Dec 28, 2022
Code for ICCV2021 paper SPEC: Seeing People in the Wild with an Estimated Camera

SPEC: Seeing People in the Wild with an Estimated Camera [ICCV 2021] SPEC: Seeing People in the Wild with an Estimated Camera, Muhammed Kocabas, Chun-

Muhammed Kocabas 187 Dec 26, 2022
Tesla Light Show xLights Guide With python

Tesla Light Show xLights Guide Welcome to the Tesla Light Show xLights guide! You can create and run your own light shows on Tesla vehicles. Running a

Tesla, Inc. 2.5k Dec 29, 2022
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

695 Jan 05, 2023
SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP

scdlpicker SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP Objective This is a simple deep learning (DL) repicker module

Joachim Saul 6 May 13, 2022