Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Overview

VQGAN-CLIP Overview

A repo for running VQGAN+CLIP locally. This started out as a Katherine Crowson VQGAN+CLIP derived Google colab notebook.

Original notebook: Open In Colab

Some example images:

Environment:

  • Tested on Ubuntu 20.04
  • GPU: Nvidia RTX 3090
  • Typical VRAM requirements:
    • 24 GB for a 900x900 image
    • 10 GB for a 512x512 image
    • 8 GB for a 380x380 image

Still a work in progress - I've not actually tested everything yet :)

Set up

Example set up using Anaconda to create a virtual Python environment with the prerequisites:

conda create --name vqgan python=3.9
conda activate vqgan

pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install ftfy regex tqdm omegaconf pytorch-lightning IPython kornia imageio imageio-ffmpeg einops 

git clone https://github.com/openai/CLIP
git clone https://github.com/CompVis/taming-transformers.git

You will also need at least 1 VQGAN pretrained model. E.g.

mkdir checkpoints
curl -L -o checkpoints/vqgan_imagenet_f16_16384.yaml -C - 'http://mirror.io.community/blob/vqgan/vqgan_imagenet_f16_16384.yaml' #ImageNet 16384
curl -L -o checkpoints/vqgan_imagenet_f16_16384.ckpt -C - 'http://mirror.io.community/blob/vqgan/vqgan_imagenet_f16_16384.ckpt' #ImageNet 16384

By default, the model .yaml and .ckpt files are expected in the checkpoints directory. See https://github.com/CompVis/taming-transformers for more information on datasets and models.

Run

To generate images from text, specify your text prompt as shown in the example below:

python generate.py -p "A painting of an apple in a fruit bowl"

Multiple prompts

Text and image prompts can be split using the pipe symbol in order to allow multiple prompts. For example:

python generate.py -p "A painting of an apple in a fruit bowl | psychedelic | surreal | weird"

Image prompts can be split in the same way. For example:

python generate.py -p "A picture of a bedroom with a portrait of Van Gogh" -ip "samples/VanGogh.jpg | samples/Bedroom.png"

"Style Transfer"

An input image with style text and a low number of iterations can be used create a sort of "style transfer" effect. For example:

python generate.py -p "A painting in the style of Picasso" -ii samples/VanGogh.jpg -i 80 -se 10 -opt AdamW -lr 0.25
Output Style
Picasso
Sketch
Psychedelic

Feedback example

By feeding back the generated images and making slight changes, some interesting effects can be created.

The example zoom.sh shows this by applying a zoom and rotate to generated images, before feeding them back in again. To use zoom.sh, specifying a text prompt, output filename and number of frames. E.g.

./zoom.sh "A painting of a red telephone box spinning through a time vortex" Telephone.png 150

Random text example

Use random.sh to make a batch of images from random text. Edit the text and number of generated images to your taste!

./random.sh

Advanced options

To view the available options, use "-h".

python generate.py -h
usage: generate.py [-h] [-p PROMPTS] [-o OUTPUT] [-i MAX_ITERATIONS] [-ip IMAGE_PROMPTS]
[-nps [NOISE_PROMPT_SEEDS ...]] [-npw [NOISE_PROMPT_WEIGHTS ...]] [-s SIZE SIZE]
[-ii INIT_IMAGE] [-iw INIT_WEIGHT] [-m CLIP_MODEL] [-conf VQGAN_CONFIG]
[-ckpt VQGAN_CHECKPOINT] [-lr STEP_SIZE] [-cuts CUTN] [-cutp CUT_POW] [-se DISPLAY_FREQ]
[-sd SEED] [-opt OPTIMISER]
optional arguments:
  -h, --help            show this help message and exit
  -p PROMPTS, --prompts PROMPTS
                        Text prompts
  -o OUTPUT, --output OUTPUT
                        Number of iterations
  -i MAX_ITERATIONS, --iterations MAX_ITERATIONS
                        Number of iterations
  -ip IMAGE_PROMPTS, --image_prompts IMAGE_PROMPTS
                        Image prompts / target image
  -nps [NOISE_PROMPT_SEEDS ...], --noise_prompt_seeds [NOISE_PROMPT_SEEDS ...]
                        Noise prompt seeds
  -npw [NOISE_PROMPT_WEIGHTS ...], --noise_prompt_weights [NOISE_PROMPT_WEIGHTS ...]
                        Noise prompt weights
  -s SIZE SIZE, --size SIZE SIZE
                        Image size (width height)
  -ii INIT_IMAGE, --init_image INIT_IMAGE
                        Initial image
  -iw INIT_WEIGHT, --init_weight INIT_WEIGHT
                        Initial image weight
  -m CLIP_MODEL, --clip_model CLIP_MODEL
                        CLIP model
  -conf VQGAN_CONFIG, --vqgan_config VQGAN_CONFIG
                        VQGAN config
  -ckpt VQGAN_CHECKPOINT, --vqgan_checkpoint VQGAN_CHECKPOINT
                        VQGAN checkpoint
  -lr STEP_SIZE, --learning_rate STEP_SIZE
                        Learning rate
  -cuts CUTN, --num_cuts CUTN
                        Number of cuts
  -cutp CUT_POW, --cut_power CUT_POW
                        Cut power
  -se DISPLAY_FREQ, --save_every DISPLAY_FREQ
                        Save image iterations
  -sd SEED, --seed SEED
                        Seed
  -opt OPTIMISER, --optimiser OPTIMISER
                        Optimiser (Adam, AdamW, Adagrad, Adamax)

Citations

@misc{unpublished2021clip,
    title  = {CLIP: Connecting Text and Images},
    author = {Alec Radford, Ilya Sutskever, Jong Wook Kim, Gretchen Krueger, Sandhini Agarwal},
    year   = {2021}
}
@misc{esser2020taming,
      title={Taming Transformers for High-Resolution Image Synthesis}, 
      author={Patrick Esser and Robin Rombach and Björn Ommer},
      year={2020},
      eprint={2012.09841},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Katherine Crowson - https://github.com/crowsonkb

Public Domain images from Open Access Images at the Art Institute of Chicago - https://www.artic.edu/open-access/open-access-images

Owner
Nerdy Rodent
Just a nerdy rodent. I do arty stuff with computers.
Nerdy Rodent
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
Unofficial PyTorch implementation of Guided Dropout

Unofficial PyTorch implementation of Guided Dropout This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm

2 Jan 07, 2022
Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

47 Jan 01, 2023
Source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network

D-HAN The source code of D-HAN This is the source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network. However, only the co

30 Sep 22, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

64 Jan 05, 2023
Distinguishing Commercial from Editorial Content in News

Distinguishing Commercial from Editorial Content in News In this repository you can find the following: An anonymized version of the data used for my

Timo Kats 3 Sep 26, 2022
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
A Flexible Generative Framework for Graph-based Semi-supervised Learning (NeurIPS 2019)

G3NN This repo provides a pytorch implementation for the 4 instantiations of the flexible generative framework as described in the following paper: A

Jiaqi Ma 14 Oct 11, 2022
Official Implementation for Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation

Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation We present a generic image-to-image translation framework, pixel2style2pixel (pSp

2.8k Dec 30, 2022
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
Code for paper entitled "Improving Novelty Detection using the Reconstructions of Nearest Neighbours"

NLN: Nearest-Latent-Neighbours A repository containing the implementation of the paper entitled Improving Novelty Detection using the Reconstructions

Michael (Misha) Mesarcik 4 Dec 14, 2022
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

Yang Li 12 May 30, 2022
Demonstration of the Model Training as a CI/CD System in Vertex AI

Model Training as a CI/CD System This project demonstrates the machine model training as a CI/CD system in GCP platform. You will see more detailed wo

Chansung Park 19 Dec 28, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
Morphable Detector for Object Detection on Demand

Morphable Detector for Object Detection on Demand (ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand. I

9 Feb 23, 2022
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022