This project uses Template Matching technique for object detecting by detection of template image over base image.

Overview

Object Detection Project Using OpenCV

projectLogo

This project uses Template Matching technique for object detecting by detection the template image over base image.

REQUIREMENTS

  • Python python  

  • OpenCV   

pip install opencv-python
pip install Tkinter

📝 CODE EXPLANATION

Importing Differnt Libraries
import cv2
import tkinter as tk 
from tkinter import filedialog,messagebox
import os
import sys

Taking Image input using Tkinter

Base Image Input Template Image Input
Base Image Input Template Image Input

Taking User Input using TKinter

root = tk.Tk() 
root.withdraw() 
file_path_base = filedialog.askopenfilename(initialdir= os.getcwd(),title="Select Base Image: ")
file_path_temp= filedialog.askopenfilename(initialdir= os.getcwd(),title="Select Template Image: ")

Loading base image and template image using cv2.imread()

Input Image Template Image Result Image
Input Image
Template Image
Result Image
Input Image
Template Image
Result Image
Input Image
Template Image
Result Image
Input Image
Template Image
Result Image
try:
    img = cv2.imread(file_path_base)

cv2.cvtColor()method is used to convert an image from one color space to another. There are more than 150 color-space conversion methods available in OpenCV.

Syntax: cv2.cvtColor(image, code, dst, dstCn)

    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    template = cv2.imread(file_path_temp,0)

Getting the height and width of the template image using .shape method.

    h ,w = template.shape

Error dialogue box using Tkinter

error

except cv2.error:
   messagebox.showinfo("Warning!","No Image Found!")
   sys.exit(0)

cv2.matchTemplate is used to comapare images. It gives a 2D-array as output.

match = cv2.matchTemplate(img_gray,template,cv2.TM_CCOEFF_NORMED)
threshold = 0.99

cv2.minMaxLoc returns the top-left corner of the template position for the best match.

min_val, max_val, min_location, max_location = cv2.minMaxLoc(match)
location = max_location
font = cv2.FONT_HERSHEY_PLAIN

cv2.rectangle() method is used to draw a rectangle on any image.

Syntax: cv2.rectangle(image, start_point, end_point, color, thickness)

cv2.rectangle(img, location, (location[0] + w, location[1] + h), (0,0,255), 2)

cv2.putText() method is used to draw a text string on any image.

Syntax: cv2.putText(image, text, start_point, font, fontScale, color, thickness, lineType, bottomLeftOrigin)

cv2.putText(img,"Object Spotted.", (location[0]-40,location[1]-5),font , 1, (0,0,0),2)

  • cv2.imwrite() method is used to save an image to any storage device. This will save the image according to the specified format in current working directory.
  • cv2.imshow method is used to display an image in a window. The window automatically fits to the image size.

Syntax: cv2.imwrite(filename, image)

Syntax: cv2.imshow(window_name, image)

cv2.imwrite('images/result.jpg',img)
cv2.imshow('Results.jpg',img)

cv2.waitkey() allows you to wait for a specific time in milliseconds until you press any button on the keyword.

cv2.waitKey(0)

cv2.destroyAllWindows() method destroys all windows whenever any key is pressed.

cv2.destroyAllWindows()

📬 Contact

If you want to contact me, you can reach me through below handles.

@prrthamm   Pratham Bhatnagar

Owner
Pratham Bhatnagar
Computer Science Engineering student at SRM University. || Blockchain || ML Enthusiast || Open Source || Team member @srm-kzilla || Associate @NextTechLab
Pratham Bhatnagar
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
a baseline to practice

ccks2021_track3_baseline a baseline to practice 路径可能会有问题,自己改改 torch==1.7.1 pyhton==3.7.1 transformers==4.7.0 cuda==11.0 this is a baseline, you can fi

45 Nov 23, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Code and data (Incidents Dataset) for ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild".

Incidents Dataset See the following pages for more details: Project page: IncidentsDataset.csail.mit.edu. ECCV 2020 Paper "Detecting natural disasters

Ethan Weber 67 Dec 27, 2022
CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation

CDGAN CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation CDGAN Implementation in PyTorch This is the imple

Kancharagunta Kishan Babu 6 Apr 19, 2022
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind

Benedek Rozemberczki 49 Dec 01, 2022
Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
Inference code for "StylePeople: A Generative Model of Fullbody Human Avatars" paper. This code is for the part of the paper describing video-based avatars.

NeuralTextures This is repository with inference code for paper "StylePeople: A Generative Model of Fullbody Human Avatars" (CVPR21). This code is for

Visual Understanding Lab @ Samsung AI Center Moscow 18 Oct 06, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
An Straight Dilated Network with Wavelet for image Deblurring

SDWNet: A Straight Dilated Network with Wavelet Transformation for Image Deblurring(offical) 1. Introduction This repo is not only used for our paper(

FlyEgle 41 Jan 04, 2023
Implementation of "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"

Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency (ICCV2021) Paper Link: https://arxiv.org/abs/2107.11355 This implementation bui

32 Nov 17, 2022
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)

Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization This codebase is the official implementation of Test-Time Classifier A

47 Dec 28, 2022
Second-Order Neural ODE Optimizer, NeurIPS 2021 spotlight

Second-order Neural ODE Optimizer (NeurIPS 2021 Spotlight) [arXiv] ✔️ faster convergence in wall-clock time | ✔️ O(1) memory cost | ✔️ better test-tim

Guan-Horng Liu 39 Oct 22, 2022
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I

Jason Ma 14 Aug 30, 2022
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.

DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos A concise deep reinforcement learning libr

329 Jan 03, 2023
Attention mechanism with MNIST dataset

[TensorFlow] Attention mechanism with MNIST dataset Usage $ python run.py Result Training Loss graph. Test Each figure shows input digit, attention ma

YeongHyeon Park 12 Jun 10, 2022