The codebase for Data-driven general-purpose voice activity detection.

Overview

Data driven GPVAD

Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training.

Framework

Sample predictions against other methods

Samples_1

Samples_2

Samples_3

Samples_4

Noise robustness

Speech

Background

Speech

Results

Our best model trained on the SRE (V3) dataset obtains the following results:

Precision Recall F1 AUC FER Event-F1
aurora_clean 96.844 95.102 95.93 98.66 3.06 74.8
aurora_noisy 90.435 92.871 91.544 97.63 6.68 54.45
dcase18 89.202 88.362 88.717 95.2 10.82 57.85

Usage

We provide most of our pretrained models in this repository, including:

  1. Both teachers (T_1, T_2)
  2. Unbalanced audioset pretrained model
  3. Voxceleb 2 pretrained model
  4. Our best submission (SRE V3 trained)

To download and run evaluation just do:

git clone https://github.com/RicherMans/Datadriven-VAD
cd Datadriven-VAD
pip3 install -r requirements.txt
python3 forward.py -w example/example.wav

Running this will print:

|   index | event_label   |   onset |   offset | filename            |
|--------:|:--------------|--------:|---------:|:--------------------|
|       0 | Speech        |    0.28 |     0.94 | example/example.wav |
|       1 | Speech        |    1.04 |     2.22 | example/example.wav |

Predicting voice activity

We support single file and filelist-batching in our script. Obtaining VAD predictions is easy:

python3 forward.py -w example/example.wav

Or if one prefers to do that batch_wise, first prepare a filelist: find . -type f -name *.wav > wavlist.txt' And then just run:

python3 forward.py -l wavlist

Extra parameters

  • -model adjusts the pretrained model. Can be one of t1,t2,v2,a2,a2_v2,sre. Refer to the paper for each respective model. By default we use sre.
  • -soft instead of predicting human-readable timestamps, the model is now outputting the raw probabilities.
  • -hard instead of predicting human-readable timestamps, the model is now outputting the post-processed 0-1 flags indicating speech. Please note this is different from the paper, which thresholded the soft probabilities without post-processing.
  • -th adjusts the threshold. If a single threshold is passed (e.g., -th 0.5), we utilize simple binearization. Otherwise use the default double threshold with -th 0.5 0.1.
  • -o outputs the results into a new folder.

Training from scratch

If you intend to rerun our work, prepare some data and extract log-Mel spectrogram features. Say, you have downloaded the balanced subset of AudioSet and stored all files in a folder data/balanced/. Then:

cd data;
mkdir hdf5 csv_labels;
find balanced -type f > wavs.txt;
python3 extract_features.py wavs.txt -o hdf5/balanced.h5
h5ls -r hdf5/balanced.h5 | awk -F[/' '] 'BEGIN{print "filename","hdf5path"}NR>1{print $2,"hdf5/balanced.h5"}'> csv_labels/balanced.csv

The input for our label prediction script is a csv file with exactly two columns, filename and hdf5path.

An example csv_labels/balanced.csv would be:

filename hdf5path
--PJHxphWEs_30.000.wav hdf5/balanced.h5                                                                                          
--ZhevVpy1s_50.000.wav hdf5/balanced.h5                                                                                          
--aE2O5G5WE_0.000.wav hdf5/balanced.h5                                                                                           
--aO5cdqSAg_30.000.wav hdf5/balanced.h5                                                                                          

After feature extraction, proceed to predict labels:

mkdir -p softlabels/{hdf5,csv};
python3 prepare_labels.py --pre ../pretrained_models/teacher1/model.pth csv_labels/balanced.csv softlabels/hdf5/balanced.h5 softlabels/csv/balanced.csv

Lastly, just train:

cd ../; #Go to project root
# Change config accoringly with input data
python3 run.py train configs/example.yaml

Citation

If youre using this work, please cite it in your publications.

@article{Dinkel2021,
author = {Dinkel, Heinrich and Wang, Shuai and Xu, Xuenan and Wu, Mengyue and Yu, Kai},
doi = {10.1109/TASLP.2021.3073596},
issn = {2329-9290},
journal = {IEEE/ACM Transactions on Audio, Speech, and Language Processing},
pages = {1542--1555},
title = {{Voice Activity Detection in the Wild: A Data-Driven Approach Using Teacher-Student Training}},
url = {https://ieeexplore.ieee.org/document/9405474/},
volume = {29},
year = {2021}
}

and

@inproceedings{Dinkel2020,
  author={Heinrich Dinkel and Yefei Chen and Mengyue Wu and Kai Yu},
  title={{Voice Activity Detection in the Wild via Weakly Supervised Sound Event Detection}},
  year=2020,
  booktitle={Proc. Interspeech 2020},
  pages={3665--3669},
  doi={10.21437/Interspeech.2020-0995},
  url={http://dx.doi.org/10.21437/Interspeech.2020-0995}
}
Owner
Heinrich Dinkel
日新月异
Heinrich Dinkel
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022
An open-access benchmark and toolbox for electricity price forecasting

epftoolbox The epftoolbox is the first open-access library for driving research in electricity price forecasting. Its main goal is to make available a

97 Dec 05, 2022
Iris prediction model is used to classify iris species created julia's DecisionTree, DataFrames, JLD2, PlotlyJS and Statistics packages.

Iris Species Predictor Iris prediction is used to classify iris species using their sepal length, sepal width, petal length and petal width created us

Siva Prakash 2 Jan 06, 2022
Learning 3D Part Assembly from a Single Image

Learning 3D Part Assembly from a Single Image This repository contains a PyTorch implementation of the paper: Learning 3D Part Assembly from A Single

18 Dec 21, 2022
Implementation of Squeezenet in pytorch, pretrained models on Cifar 10 data to come

Pytorch Squeeznet Pytorch implementation of Squeezenet model as described in https://arxiv.org/abs/1602.07360 on cifar-10 Data. The definition of Sque

gaurav pathak 86 Oct 28, 2022
Computations and statistics on manifolds with geometric structures.

Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r

875 Dec 31, 2022
Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment

Voronoi Multi_Robot Collaborate Exploration Introduction In the unknown environment, the cooperative exploration of multiple robots is completed by Vo

PeaceWord 6 Nov 22, 2022
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021
A python comtrade load library accelerated by go

Comtrade-GRPC Code for python used is mainly from dparrini/python-comtrade. Just patch the code in BinaryDatReader.parse for parsing a little more eff

Bo 1 Dec 27, 2021
An addernet CUDA version

Training addernet accelerated by CUDA Usage cd adder_cuda python setup.py install cd .. python main.py Environment pytorch 1.10.0 CUDA 11.3 benchmark

LingXY 4 Jun 20, 2022
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

MilaGraph 117 Dec 09, 2022
Code for "PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation" CVPR 2019 oral

Good news! We release a clean version of PVNet: clean-pvnet, including how to train the PVNet on the custom dataset. Use PVNet with a detector. The tr

ZJU3DV 722 Dec 27, 2022
Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Sami BARCHID 2 Oct 20, 2022
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.

SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algori

Anish 324 Dec 27, 2022
Pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments

Cascaded-FCN This repository contains the pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments the liver and its lesions out of

300 Nov 22, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Kingdrone 174 Dec 22, 2022
Logistic Bandit experiments. Official code for the paper "Jointly Efficient and Optimal Algorithms for Logistic Bandits".

Code for the paper Jointly Efficient and Optimal Algorithms for Logistic Bandits, by Louis Faury, Marc Abeille, Clément Calauzènes and Kwang-Sun Jun.

Faury Louis 1 Jan 22, 2022
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

Chang-Shu Chung 1.3k Jan 07, 2023