Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

Related tags

Deep Learningi-Blurry
Overview

The Official Implementation of CLIB (Continual Learning for i-Blurry)

Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference
Hyunseo Koh*, Dahyun Kim*, Jung-Woo Ha, Jonghyun Choi
ICLR 2022 [Paper]
(* indicates equal contribution)

Overview

Abstract

Despite rapid advances in continual learning, a large body of research is devoted to improving performance in the existing setups. While a handful of work do propose new continual learning setups, they still lack practicality in certain aspects. For better practicality, we first propose a novel continual learning setup that is online, task-free, class-incremental, of blurry task boundaries and subject to inference queries at any moment. We additionally propose a new metric to better measure the performance of the continual learning methods subject to inference queries at any moment. To address the challenging setup and evaluation protocol, we propose an effective method that employs a new memory management scheme and novel learning techniques. Our empirical validation demonstrates that the proposed method outperforms prior arts by large margins.

Results

Results of CL methods on various datasets, for online continual learning on i-Blurry-50-10 split, measured by metric. For more details, please refer to our paper.

Methods CIFAR10 CIFAR100 TinyImageNet ImageNet
EWC++ 57.34±2.10 35.35±1.96 22.26±1.15 24.81
BiC 58.38±0.54 33.51±3.04 22.80±0.94 27.41
ER-MIR 57.28±2.43 35.35±1.41 22.10±1.14 20.48
GDumb 53.20±1.93 32.84±0.45 18.17±0.19 14.41
RM 23.00±1.43 8.63±0.19 5.74±0.30 6.22
Baseline-ER 57.46±2.25 35.61±2.08 22.45±1.15 25.16
CLIB 70.26±1.28 46.67±0.79 23.87±0.68 28.16

Getting Started

To set up the environment for running the code, you can either use the docker container, or manually install the requirements in a virtual environment.

Using Docker Container (Recommended)

We provide the Docker image khs8157/iblurry on Docker Hub for reproducing the results. To download the docker image, run the following command:

docker pull khs8157/iblurry:latest

After pulling the image, you may run the container via following command:

docker run --gpus all -it --shm-size=64gb -v /PATH/TO/CODE:/PATH/TO/CODE --name=CONTAINER_NAME khs8157/iblurry:latest bash

Replace the arguments written in italic with your own arguments.

Requirements

  • Python3
  • Pytorch (>=1.9)
  • torchvision (>=0.10)
  • numpy
  • pillow~=6.2.1
  • torch_optimizer
  • randaugment
  • easydict
  • pandas~=1.1.3

If not using Docker container, install the requirements using the following command

pip install -r requirements.txt

Running Experiments

Downloading the Datasets

CIFAR10, CIFAR100, and TinyImageNet can be downloaded by running the corresponding scripts in the dataset/ directory. ImageNet dataset can be downloaded from Kaggle.

Experiments Using Shell Script

Experiments for the implemented methods can be run by executing the shell scripts provided in scripts/ directory. For example, you may run CL experiments using CLIB method by

bash scripts/clib.sh

You may change various arguments for different experiments.

  • NOTE: Short description of the experiment. Experiment result and log will be saved at results/DATASET/NOTE.
    • WARNING: logs/results with the same dataset and note will be overwritten!
  • MODE: CL method to be applied. Methods implemented in this version are: [clib, er, ewc++, bic, mir, gdumb, rm]
  • DATASET: Dataset to use in experiment. Supported datasets are: [cifar10, cifar100, tinyimagenet, imagenet]
  • N_TASKS: Number of tasks. Note that corresponding json file should exist in collections/ directory.
  • N: Percentage of disjoint classes in i-blurry split. N=100 for full disjoint, N=0 for full blurry. Note that corresponding json file should exist in collections/ directory.
  • M: Blurry ratio of blurry classes in i-blurry split. Note that corresponding json file should exist in collections/ directory.
  • GPU_TRANSFORM: Perform AutoAug on GPU, for faster running.
  • USE_AMP: Use automatic mixed precision (amp), for faster running and reducing memory cost.
  • MEM_SIZE: Maximum number of samples in the episodic memory.
  • ONLINE_ITER: Number of model updates per sample.
  • EVAL_PERIOD: Period of evaluation queries, for calculating .

Citation

If you used our code or i-blurry setup, please cite our paper.

@inproceedings{koh2022online,
  title={Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference},
  author={Koh, Hyunseo and Kim, Dahyun and Ha, Jung-Woo and Choi, Jonghyun},
  booktitle={ICLR},
  year={2022}
}

License

Copyright (C) 2022-present NAVER Corp.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <https://www.gnu.org/licenses/>.
Owner
NAVER AI
Official account of NAVER CLOVA AI Lab, Korea No.1 Industrial AI Research Group
NAVER AI
Learn about quantum computing and algorithm on quantum computing

quantum_computing this repo contains everything i learn about quantum computing and algorithm on quantum computing what is aquantum computing quantum

arfy slowy 8 Dec 25, 2022
Diverse graph algorithms implemented using JGraphT library.

# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing J

See Woo Lee 3 Dec 17, 2022
[NeurIPS'21 Spotlight] PyTorch code for our paper "Aligned Structured Sparsity Learning for Efficient Image Super-Resolution"

ASSL This repository is for a new network pruning method (Aligned Structured Sparsity Learning, ASSL) for efficient single image super-resolution (SR)

Huan Wang 47 Nov 28, 2022
Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)

DSIG Deep Structured Instance Graph for Distilling Object Detectors Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia. [pdf] [slide]

DV Lab 31 Nov 17, 2022
Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning This is the implementation of the paper "Self-Promoted Prototype Refinement

Kai Zhu 78 Dec 02, 2022
使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,包含C++和Python两种版本的程序实现。本套程序只依赖opencv库就可以运行, 从而彻底摆脱对任何深度学习框架的依赖。

YOLOP-opencv-dnn 使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,依然是包含C++和Python两种版本的程序实现 onnx文件从百度云盘下载,链接:https://pan.baidu.com/s/1A_9cldU

178 Jan 07, 2023
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 92 Jan 04, 2023
Implements a fake news detection program using classifiers.

Fake news detection Implements a fake news detection program using classifiers for Data Mining course at UoA. Description The project is the categoriz

Apostolos Karvelas 1 Jan 09, 2022
Source Code for Simulations in the Publication "Can the brain use waves to solve planning problems?"

Code for Simulations in the Publication Can the brain use waves to solve planning problems? Installing Required Python Packages Please use Python vers

EMD Group 2 Jul 01, 2022
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
PyTorch EO aims to make Deep Learning for Earth Observation data easy and accessible to real-world cases and research alike.

Pytorch EO Deep Learning for Earth Observation applications and research. 🚧 This project is in early development, so bugs and breaking changes are ex

earthpulse 28 Aug 25, 2022
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)"

BAM and CBAM Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)" Updat

Jongchan Park 1.7k Jan 01, 2023
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors

GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E

Hyeon Jeon 7 Nov 23, 2022
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge

Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio

Søren Hougaard Mulvad 13 Dec 25, 2022
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022
Extremely simple and fast extreme multi-class and multi-label classifiers.

napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m

Marek Wydmuch 43 Nov 14, 2022