Point Cloud Registration using Representative Overlapping Points.

Overview

Point Cloud Registration using Representative Overlapping Points (ROPNet)

Abstract

3D point cloud registration is a fundamental task in robotics and computer vision. Recently, many learning-based point cloud registration methods based on correspondences have emerged. However, these methods heavily rely on such correspondences and meet great challenges with partial overlap. In this paper, we propose ROPNet, a new deep learning model using Representative Overlapping Points with discriminative features for registration that transforms partial-to-partial registration into partial-to-complete registration. Specifically, we propose a context-guided module which uses an encoder to extract global features for predicting point overlap score. To better find representative overlapping points, we use the extracted global features for coarse alignment. Then, we introduce a Transformer to enrich point features and remove non-representative points based on point overlap score and feature matching. A similarity matrix is built in a partial-to-complete mode, and finally, weighted SVD is adopted to estimate a transformation matrix. Extensive experiments over ModelNet40 using noisy and partially overlapping point clouds show that the proposed method outperforms traditional and learning-based methods, achieving state-of-the-art performance.

Environment

The code has been tested on Ubuntu 16.04, Python 3.7, PyTorch 1.7, Open3D 0.9.

Dataset

Download ModelNet40 from here [435M].

Model Training

cd src/
python train.py --root your_data_path/modelnet40_ply_hdf5_2048/ --noise --unseen

Model Evaluation

cd src/
python eval.py --root your_data_path/modelnet40_ply_hdf5_2048/  --unseen --noise  --cuda --checkpoint work_dirs/models/min_rot_error.pth

Registration Visualization

cd src/
python vis.py --root your_data_path/modelnet40_ply_hdf5_2048/  --unseen --noise  --checkpoint work_dirs/models/min_rot_error.pth

Citation

If you find our work is useful, please consider citing:

@misc{zhu2021point,
      title={Point Cloud Registration using Representative Overlapping Points}, 
      author={Lifa Zhu and Dongrui Liu and Changwei Lin and Rui Yan and Francisco Gómez-Fernández and Ninghua Yang and Ziyong Feng},
      year={2021},
      eprint={2107.02583},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgements

We thank the authors of RPMNet, PCRNet, OverlapPredator, PCT and PointNet++ for open sourcing their methods.

We also thank the third-party code PCReg.PyTorch and Pointnet2.PyTorch.

Owner
ZhuLifa
Computer Vision
ZhuLifa
A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning

Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

Mathieu Godbout 1 Nov 19, 2021
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
Classifying cat and dog images using Kaggle dataset

PyTorch Image Classification Classifies an image as containing either a dog or a cat (using Kaggle's public dataset), but could easily be extended to

Robert Coleman 74 Nov 22, 2022
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Nicolas Girard 186 Jan 04, 2023
The official homepage of the COCO-Stuff dataset.

The COCO-Stuff dataset Holger Caesar, Jasper Uijlings, Vittorio Ferrari Welcome to official homepage of the COCO-Stuff [1] dataset. COCO-Stuff augment

Holger Caesar 715 Dec 31, 2022
Group-Free 3D Object Detection via Transformers

Group-Free 3D Object Detection via Transformers By Ze Liu, Zheng Zhang, Yue Cao, Han Hu, Xin Tong. This repo is the official implementation of "Group-

Ze Liu 213 Dec 07, 2022
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization".

SAPE Project page Paper Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization". Environment Cre

36 Dec 09, 2022
A containerized REST API around OpenAI's CLIP model.

OpenAI's CLIP — REST API This is a container wrapping OpenAI's CLIP model in a RESTful interface. Running the container locally First, build the conta

Santiago Valdarrama 48 Nov 06, 2022
🧑‍🔬 verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104

Tim Pearce 169 Dec 26, 2022
Learning to Estimate Hidden Motions with Global Motion Aggregation

Learning to Estimate Hidden Motions with Global Motion Aggregation (GMA) This repository contains the source code for our paper: Learning to Estimate

Shihao Jiang (Zac) 221 Dec 18, 2022
FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics

FusionNet_Pytorch FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics Requirements Pytorch 0.1.11 Pyt

Choi Gunho 102 Dec 13, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters"

Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters" Pipeline of CLIP-Adapter CLIP-Adapter is a drop-in modul

peng gao 157 Dec 26, 2022
A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

Modular Probabilistic Programming on MXNet

MXFusion | | | | Tutorials | Documentation | Contribution Guide MXFusion is a modular deep probabilistic programming library. With MXFusion Modules yo

Amazon 100 Dec 10, 2022
Block Sparse movement pruning

Movement Pruning: Adaptive Sparsity by Fine-Tuning Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; ho

Hugging Face 54 Dec 20, 2022