Hypercomplex Neural Networks with PyTorch

Overview

HyperNets

Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate research in this topic.

Lightweight Convolutional Neural Networks By Hypercomplex Parameterization

Eleonora Grassucci, Aston Zhang, and Danilo Comminiello

[Abstract on OpenReview] [Paper on OpenReview]

Abstract

Hypercomplex neural networks have proved to reduce the overall number of parameters while ensuring valuable performances by leveraging the properties of Clifford algebras. Recently, hypercomplex linear layers have been further improved by involving efficient parameterized Kronecker products. In this paper, we define the parameterization of hypercomplex convolutional layers to develop lightweight and efficient large-scale convolutional models. Our method grasps the convolution rules and the filters organization directly from data without requiring a rigidly predefined domain structure to follow. The proposed approach is flexible to operate in any user-defined or tuned domain, from 1D to nD regardless of whether the algebra rules are preset. Such a malleability allows processing multidimensional inputs in their natural domain without annexing further dimensions, as done, instead, in quaternion neural networks for 3D inputs like color images. As a result, the proposed method operates with 1/n free parameters as regards its analog in the real domain. We demonstrate the versatility of this approach to multiple domains of application by performing experiments on various image datasets as well as audio datasets in which our method outperforms real and quaternion-valued counterparts.

Parameterized Hypercomplex Convolutional (PHC) Layer

The core of the approach is the sum of Kronecker products which grasps the convolution rule and the filters organization directly from data. The higlights of our approach is defined in:

def kronecker_product1(self, A, F):
  siz1 = torch.Size(torch.tensor(A.shape[-2:]) * torch.tensor(F.shape[-4:-2]))
  siz2 = torch.Size(torch.tensor(F.shape[-2:]))
  res = A.unsqueeze(-1).unsqueeze(-3).unsqueeze(-1).unsqueeze(-1) * F.unsqueeze(-4).unsqueeze(-6)
  siz0 = res.shape[:1]
  out = res.reshape(siz0 + siz1 + siz2)
  return out
 
def forward(self, input):
  self.weight = torch.sum(self.kronecker_product1(self.A, self.F), dim=0)
  input = input.type(dtype=self.weight.type())      
  return F.conv2d(input, weight=self.weight, stride=self.stride, padding=self.padding)

Te PHC layer, by setting n=4, is able to subsume the Hamilton rule to organize filters in the convolution as:

Usage

Tutorials

The folder tutorials contain a set of tutorial to understand the Parameterized Hypercomplex Multiplication (PHM) layer and the Parameterized Hypercomplex Convolutional (PHC) layer. We develop simple toy examples to learn the matrices A that define algebra rules in order to demonstrate the effectiveness of the proposed approach.

  • PHM tutorial.ipynb is a simple tutorial which shows how the PHM layer learns the Hamilton product between two pure quaternions.
  • PHC tutorial.ipynb is a simple tutorial which shows how the PHC layer learn the Hamilton rule to organize filters in convolution.
  • Toy regression examples with PHM.ipynb is a notebook containing some regression tasks.

Experiments on Image Classification

To reproduce image classification experiments, please refer to the image-classification folder.

  • pip install -r requirements.txt.
  • Choose the configurations in configs and run the experiment:

python main.py --TextArgs=config_name.txt.

The experiment will be directly tracked on Weight&Biases.

Experiments on Sound Event Detection

To reproduce sound event detection experiments, please refer to the sound-event-detection folder.

  • pip install -r requirements.txt.

We follow the instructions in the original repository for the L3DAS21 dataset:

  • Download the dataset:

python download_dataset.py --task Task2 --set_type train --output_path DATASETS/Task2

python download_dataset.py --task Task2 --set_type dev --output_path DATASETS/Task2

  • Preprocess the dataset:

python preprocessing.py --task 2 --input_path DATASETS/Task2 --num_mics 1 --frame_len 100

Specify num_mics=2 and output_phase=True to perform experiments up to 16-channel inputs.

  • Run the experiment:

python train_baseline_task2.py

Specify the hyperparameters options. We perform experiments with epochs=1000, batch_size=16 and input_channels=4/8/16 on a single Tesla V100-32GB GPU.

  • Run the evaluation:

python evaluate_baseline_task2.py

Specify the hyperparameters options.

More will be added

Soon: PHC layer for 1D convolutions!

Similar reporitories

Quaternion layers are borrowed from:

Cite

Owner
Eleonora Grassucci
PhD Candidate in ICT at ISPAMM Lab, Sapienza Università di Roma, Data Scientist.
Eleonora Grassucci
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation

ST++ This is the official PyTorch implementation of our paper: ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation. Lihe Ya

Lihe Yang 147 Jan 03, 2023
DRIFT is a tool for Diachronic Analysis of Scientific Literature.

About DRIFT is a tool for Diachronic Analysis of Scientific Literature. The application offers user-friendly and customizable utilities for two modes:

Rajaswa Patil 108 Dec 12, 2022
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Copy Paste positive polyp using poisson image blending for medical image segmentation

Copy Paste positive polyp using poisson image blending for medical image segmentation According poisson image blending I've completely used it for bio

Phạm Vũ Hùng 2 Oct 19, 2021
VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

VID-Fusion VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation Authors: Ziming Ding , Tiankai Yang, Kunyi Zhan

ZJU FAST Lab 86 Nov 18, 2022
A simple log parser and summariser for IIS web server logs

IISLogFileParser A basic parser tool for IIS Logs which summarises findings from the log file. Inspired by the Gist https://gist.github.com/wh13371/e7

2 Mar 26, 2022
Campsite Reservation Finder

yellowstone-camping UPDATE: yellowstone-camping is being expanded and renamed to camply. The updated tool now interfaces with the Recreation.gov API a

Justin Flannery 233 Jan 08, 2023
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
Exporter for Storage Area Network (SAN)

SAN Exporter Prometheus exporter for Storage Area Network (SAN). We all know that each SAN Storage vendor has their own glossary of terms, health/perf

vCloud 32 Dec 16, 2022
Learning multiple gaits of quadruped robot using hierarchical reinforcement learning

Learning multiple gaits of quadruped robot using hierarchical reinforcement learning We propose a method to learn multiple gaits of quadruped robot us

Yunho Kim 17 Dec 11, 2022
Random Forests for Regression with Missing Entries

Random Forests for Regression with Missing Entries These are specific codes used in the article: On the Consistency of a Random Forest Algorithm in th

Irving Gómez-Méndez 1 Nov 15, 2021
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021
2D&3D human pose estimation

Human Pose Estimation Papers [CVPR 2016] - 201511 [IJCAI 2016] - 201602 Other Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors

133 Jan 02, 2023
a simple, efficient, and intuitive text editor

Oxygen beta a simple, efficient, and intuitive text editor Overview oxygen is a simple, efficient, and intuitive text editor designed as more featured

Aarush Gupta 1 Feb 23, 2022
The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis.

deep-learning-LAM-avulsion-diagnosis The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis

1 Jan 12, 2022
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022
Code for 1st place solution in Sleep AI Challenge SNU Hospital

Sleep AI Challenge SNU Hospital 2021 Code for 1st place solution for Sleep AI Challenge (Note that the code is not fully organized) Refer to the notio

Saewon Yang 13 Jan 03, 2022