The source code and dataset for the RecGURU paper (WSDM 2022)

Overview

RecGURU

About The Project

Source code and baselines for the RecGURU paper "RecGURU: Adversarial Learning of Generalized User Representations for Cross-Domain Recommendation (WSDM 2022)"

Code Structure

RecGURU  
├── README.md                                 Read me file 
├── data_process                              Data processing methods
│   ├── __init__.py                           Package initialization file     
│   └── amazon_csv.py                         Code for processing the amazon data (in .csv format)
│   └── business_process.py                   Code for processing the collected data
│   └── item_frequency.py                     Calculate item frequency in each domain
│   └── run.sh                                Shell script to perform data processing  
├── GURU                                      Scripts for modeling, training, and testing 
│   ├── data                                  Dataloader package      
│     ├── __init__.py                         Package initialization file 
│     ├── data_loader.py                      Customized dataloaders 
│   └── tools                                 Tools such as loss function, evaluation metrics, etc.
│     ├── __init__.py                         Package initialization file
│     ├── lossfunction.py                     Customized loss functions
│     ├── metrics.py                          Evaluation metrics
│     ├── plot.py                             Plot function
│     ├── utils.py                            Other tools
│  ├── Transformer                            Transformer package
│     ├── __init__.py                         Package initialization 
│     ├── transformer.py                      transformer module
│  ├── AutoEnc4Rec.py                         Autoencoder based sequential recommender
│  ├── AutoEnc4Rec_cross.py                   Cross-domain recommender modules
│  ├── config_auto4rec.py                     Model configuration file
│  ├── gan_training.py                        Training methods of the GAN framework
│  ├── train_auto.py                          Main function for training and testing single-domain sequential recommender
│  ├── train_gan.py                           Main function for training and testing cross-domain sequential recommender
└── .gitignore                                gitignore file

Dataset

  1. The public datasets: Amazon view dataset at: https://nijianmo.github.io/amazon/index.html
  2. Collected datasets: https://drive.google.com/file/d/1NbP48emGPr80nL49oeDtPDR3R8YEfn4J/view
  3. Data processing:

Amazon dataset:

```shell
cd ../data_process
python amazon_csv.py   
```

Collected dataset

```shell
cd ../data_process
python business_process.py --rate 0.1  # portion of overlapping user = 0.1   
```

After data process, for each cross-domain scenario we have a dataset folder:

."a_domain"-"b_domain"
├── a_only.pickle         # users in domain a only
├── b_only.pickle         # users in domain b only
├── a.pickle              # all users in domain a
├── b.pickle              # all users in domain b
├── a_b.pickle            # overlapped users of domain a and b   

Note: see the code for processing details and make modifications accordingly.

Run

  1. Single-domain Methods:
    # SAS
    python train_auto.py --sas "True"
    # AutoRec (ours)
    python train_auto.py 
  2. Cross-Domain Methods:
    # RecGURU
    python train_gan.py --cross "True"
Owner
Chenglin Li
Chenglin Li
Kroomsa: A search engine for the curious

Kroomsa A search engine for the curious. It is a search algorithm designed to en

Wingify 7 Jun 20, 2022
A nutritional label for food for thought.

Lexiscore As a first effort in tackling the theme of information overload in content consumption, I've been working on the lexiscore: a nutritional la

Paul Bricman 34 Nov 08, 2022
QTool: A Low-bit Quantization Toolbox for Deep Neural Networks in Computer Vision

This project provides abundant choices of quantization strategies (such as the quantization algorithms, training schedules and empirical tricks) for quantizing the deep neural networks into low-bit c

Monash Green AI Lab 51 Dec 10, 2022
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

51 Dec 11, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
Omnidirectional camera calibration in python

Omnidirectional Camera Calibration Key features pure python initial solution based on A Toolbox for Easily Calibrating Omnidirectional Cameras (Davide

Thomas Pönitz 12 Nov 22, 2022
Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.

kNN_From_Scratch I implemented the k nearest neighbors (kNN) classification algorithm on python. This algorithm is used to predict the classes of new

1 Dec 14, 2021
SAMO: Streaming Architecture Mapping Optimisation

SAMO: Streaming Architecture Mapping Optimiser The SAMO framework provides a method of optimising the mapping of a Convolutional Neural Network model

Alexander Montgomerie-Corcoran 20 Dec 10, 2022
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
Pytorch implementation for "Open Compound Domain Adaptation" (CVPR 2020 ORAL)

Open Compound Domain Adaptation [Project] [Paper] [Demo] [Blog] Overview Open Compound Domain Adaptation (OCDA) is the author's re-implementation of t

Zhongqi Miao 137 Dec 15, 2022
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022
A simple root calculater for python

Root A simple root calculater Usage/Examples python3 root.py 9 3 4 # Order: number - grid - number of decimals # Output: 2.08

Reza Hosseinzadeh 5 Feb 10, 2022
Free course that takes you from zero to Reinforcement Learning PRO 🦸🏻‍🦸🏽

The Hands-on Reinforcement Learning course 🚀 From zero to HERO 🦸🏻‍🦸🏽 Out of intense complexities, intense simplicities emerge. -- Winston Churchi

Pau Labarta Bajo 260 Dec 28, 2022
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

4 Mar 11, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

Rik Huygen 24 Dec 10, 2022
SAT: 2D Semantics Assisted Training for 3D Visual Grounding, ICCV 2021 (Oral)

SAT: 2D Semantics Assisted Training for 3D Visual Grounding SAT: 2D Semantics Assisted Training for 3D Visual Grounding by Zhengyuan Yang, Songyang Zh

Zhengyuan Yang 22 Nov 30, 2022