PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

Overview

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations


Project | Paper | Colab

PyTorch implementation of SDEdit: Image Synthesis and Editing with Stochastic Differential Equations.

Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, Stefano Ermon

Stanford and CMU

Overview

The key intuition of SDEdit is to "hijack" the reverse stochastic process of SDE-based generative models, as illustrated in the figure below. Given an input image for editing, such as a stroke painting or an image with color strokes, we can add a suitable amount of noise to make its artifacts undetectable, while still preserving the overall structure of the image. We then initialize the reverse SDE with this noisy input, and simulate the reverse process to obtain a denoised image of high quality. The final output is realistic while resembling the overall image structure of the input.

Getting Started

The code will automatically download pretrained SDE (VP) PyTorch models on CelebA-HQ, LSUN bedroom, and LSUN church outdoor.

Data format

We save the image and the corresponding mask in an array format [image, mask], where "image" is the image with range [0,1] in the PyTorch tensor format, "mask" is the corresponding binary mask (also the PyTorch tensor format) specifying the editing region. We provide a few examples, and functions/process_data.py will automatically download the examples to the colab_demo folder.

Stroke-based image generation

Given an input stroke painting, our goal is to generate a realistic image that shares the same structure as the input painting. SDEdit can synthesize multiple diverse outputs for each input on LSUN bedroom, LSUN church and CelebA-HQ datasets.

To generate results on LSUN datasets, please run

python main.py --exp ./runs/ --config bedroom.yml --sample -i images --npy_name lsun_bedroom1 --sample_step 3 --t 500  --ni
python main.py --exp ./runs/ --config church.yml --sample -i images --npy_name lsun_church --sample_step 3 --t 500  --ni

Stroke-based image editing

Given an input image with user strokes, we want to manipulate a natural input image based on the user's edit. SDEdit can generate image edits that are both realistic and faithful (to the user edit), while avoid introducing undesired changes.

To perform stroke-based image editing, run
python main.py --exp ./runs/  --config church.yml --sample -i images --npy_name lsun_edit --sample_step 3 --t 500  --ni

Additional results

References

If you find this repository useful for your research, please cite the following work.

@article{meng2021sdedit,
      title={SDEdit: Image Synthesis and Editing with Stochastic Differential Equations},
      author={Chenlin Meng and Yang Song and Jiaming Song and Jiajun Wu and Jun-Yan Zhu and Stefano Ermon},
      year={2021},
      journal={arXiv preprint arXiv:2108.01073},
}

This implementation is based on / inspired by:

OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis

OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis Overview OpenABC-D is a large-scale labeled dataset generate

NYU Machine-Learning guided Design Automation (MLDA) 31 Nov 22, 2022
Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 87 Jan 03, 2023
arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

Andrej 671 Dec 31, 2022
Bootstrapped Representation Learning on Graphs

Bootstrapped Representation Learning on Graphs This is the PyTorch implementation of BGRL Bootstrapped Representation Learning on Graphs The main scri

NerDS Lab :: Neural Data Science Lab 55 Jan 07, 2023
Learning Correspondence from the Cycle-consistency of Time (CVPR 2019)

TimeCycle Code for Learning Correspondence from the Cycle-consistency of Time (CVPR 2019, Oral). The code is developed based on the PyTorch framework,

Xiaolong Wang 706 Nov 29, 2022
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! πŸŽ„ πŸŽ… To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm Γ…gren 5 Dec 29, 2022
Implementation of the paper Recurrent Glimpse-based Decoder for Detection with Transformer.

REGO-Deformable DETR By Zhe Chen, Jing Zhang, and Dacheng Tao. This repository is the implementation of the paper Recurrent Glimpse-based Decoder for

Zhe Chen 33 Nov 30, 2022
Facebook AI Image Similarity Challenge: Descriptor Track

Facebook AI Image Similarity Challenge: Descriptor Track This repository contains the code for our solution to the Facebook AI Image Similarity Challe

Sergio MP 17 Dec 14, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
Header-only library for using Keras models in C++.

frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would

Tobias Hermann 927 Jan 05, 2023
pytorch implementation of openpose including Hand and Body Pose Estimation.

pytorch-openpose pytorch implementation of openpose including Body and Hand Pose Estimation, and the pytorch model is directly converted from openpose

Hzzone 1.4k Jan 07, 2023
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg

23 Oct 10, 2022
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
PyTorch implementation of "Simple and Deep Graph Convolutional Networks"

Simple and Deep Graph Convolutional Networks This repository contains a PyTorch implementation of "Simple and Deep Graph Convolutional Networks".(http

chenm 253 Dec 08, 2022
Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images

Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images In this paper, we present an effective Dynamic Enhancement Anchor

13 Dec 09, 2022
disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
Official implementation of "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers"

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 31, 2022
Free course that takes you from zero to Reinforcement Learning PRO πŸ¦ΈπŸ»β€πŸ¦ΈπŸ½

The Hands-on Reinforcement Learning course πŸš€ From zero to HERO πŸ¦ΈπŸ»β€πŸ¦ΈπŸ½ Out of intense complexities, intense simplicities emerge. -- Winston Churchi

Pau Labarta Bajo 260 Dec 28, 2022
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022