PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

Overview

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations


Project | Paper | Colab

PyTorch implementation of SDEdit: Image Synthesis and Editing with Stochastic Differential Equations.

Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, Stefano Ermon

Stanford and CMU

Overview

The key intuition of SDEdit is to "hijack" the reverse stochastic process of SDE-based generative models, as illustrated in the figure below. Given an input image for editing, such as a stroke painting or an image with color strokes, we can add a suitable amount of noise to make its artifacts undetectable, while still preserving the overall structure of the image. We then initialize the reverse SDE with this noisy input, and simulate the reverse process to obtain a denoised image of high quality. The final output is realistic while resembling the overall image structure of the input.

Getting Started

The code will automatically download pretrained SDE (VP) PyTorch models on CelebA-HQ, LSUN bedroom, and LSUN church outdoor.

Data format

We save the image and the corresponding mask in an array format [image, mask], where "image" is the image with range [0,1] in the PyTorch tensor format, "mask" is the corresponding binary mask (also the PyTorch tensor format) specifying the editing region. We provide a few examples, and functions/process_data.py will automatically download the examples to the colab_demo folder.

Stroke-based image generation

Given an input stroke painting, our goal is to generate a realistic image that shares the same structure as the input painting. SDEdit can synthesize multiple diverse outputs for each input on LSUN bedroom, LSUN church and CelebA-HQ datasets.

To generate results on LSUN datasets, please run

python main.py --exp ./runs/ --config bedroom.yml --sample -i images --npy_name lsun_bedroom1 --sample_step 3 --t 500  --ni
python main.py --exp ./runs/ --config church.yml --sample -i images --npy_name lsun_church --sample_step 3 --t 500  --ni

Stroke-based image editing

Given an input image with user strokes, we want to manipulate a natural input image based on the user's edit. SDEdit can generate image edits that are both realistic and faithful (to the user edit), while avoid introducing undesired changes.

To perform stroke-based image editing, run
python main.py --exp ./runs/  --config church.yml --sample -i images --npy_name lsun_edit --sample_step 3 --t 500  --ni

Additional results

References

If you find this repository useful for your research, please cite the following work.

@article{meng2021sdedit,
      title={SDEdit: Image Synthesis and Editing with Stochastic Differential Equations},
      author={Chenlin Meng and Yang Song and Jiaming Song and Jiajun Wu and Jun-Yan Zhu and Stefano Ermon},
      year={2021},
      journal={arXiv preprint arXiv:2108.01073},
}

This implementation is based on / inspired by:

Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

Hanwen Cao 26 Aug 25, 2022
ColBERT: Contextualized Late Interaction over BERT (SIGIR'20)

Update: if you're looking for ColBERTv2 code, you can find it alongside a new simpler API, in the branch new_api. ColBERT ColBERT is a fast and accura

Stanford Future Data Systems 637 Jan 08, 2023
Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction

Welcome to Barlow Barlow is a tool for identifying the failure modes for a given neural network. To achieve this, Barlow first creates a group of imag

Sahil Singla 33 Dec 05, 2022
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Haohe Liu (刘濠赫) 84 Dec 20, 2022
CRNN With PyTorch

CRNN-PyTorch Implementation of https://arxiv.org/abs/1507.05717

Vadim 4 Sep 01, 2022
Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors

PSML paper: Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors PSML_IONE,PSML_ABNE,PSML_DEEPLINK,PSML_SNNA: numpy

13 Nov 27, 2022
PyTorch implementation of "A Two-Stage End-to-End System for Speech-in-Noise Hearing Aid Processing"

Implementation of the Sheffield entry for the first Clarity enhancement challenge (CEC1) This repository contains the PyTorch implementation of "A Two

10 Aug 19, 2022
Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami

ZJU3DV 1.4k Jan 04, 2023
Robust, modular and efficient implementation of advanced Hamiltonian Monte Carlo algorithms

AdvancedHMC.jl AdvancedHMC.jl provides a robust, modular and efficient implementation of advanced HMC algorithms. An illustrative example for Advanced

The Turing Language 167 Jan 01, 2023
PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluation of Visual Stories via Semantic Consistency"

Improving Generation and Evaluation of Visual Stories via Semantic Consistency PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluat

Adyasha Maharana 28 Dec 08, 2022
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
SFD implement with pytorch

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector Description Meanwhile train hand

Jun Li 251 Dec 22, 2022
Manifold-Mixup implementation for fastai V2

Manifold Mixup Unofficial implementation of ManifoldMixup (Proceedings of ICML 19) for fast.ai (V2) based on Shivam Saboo's pytorch implementation of

Nestor Demeure 16 Jul 25, 2022
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022
QueryFuzz implements a metamorphic testing approach to test Datalog engines.

Datalog is a popular query language with applications in several domains. Like any complex piece of software, Datalog engines may contain bugs. The mo

34 Sep 10, 2022
Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21

Skeletal-GNN Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21 Various deep learning techniques have been propose

37 Oct 23, 2022
Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality".

personalized-breath Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality". Guideline To ex

Manh-Ha Bui 2 Nov 15, 2021
Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.

Homepage | Paper | Datasets | Leaderboard | Documentation Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evalu

THUDM 66 Dec 22, 2022