A annotation of yolov5-5.0

Overview

代码版本:0714 commit #4000

$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ git checkout 720aaa65c8873c0d87df09e3c1c14f3581d4ea61

这个代码只是注释版本哈,不是很建议直接运行。

考虑到可能会有人直接运行,可能之后有时间会出一个新的6.0版本的注释emmmm.

  • yolov5-6.0

最近发现了一个更详细的yolov5注释版yolov5-5.x-annotations.


Yolov5网络结构图(2.0-5.0)

下面的文件均有注释,有些没有用到的函数,以及网络结构模块等没有注释

yolov5_annotations
├── data
├── models
│   ├── common.py
│   ├── experimental.py
│   ├── yolo.py
├── utils
│   ├── augmentations.py
│   ├── autoanchor.py
│   ├── datasets.py
│   ├── general.py
│   ├── loss.py
│   ├── metrics.py
│   ├── plots.py
│   ├── torch_utils.py
│   ├── google_utils.py
├── export.py
├── hubconf.py
├── train.py
├── val.py
├── detect.py

原README分割线



CI CPU testing YOLOv5 Citation
Open In Colab Open In Kaggle Docker Pulls


YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.

Documentation

See the YOLOv5 Docs for full documentation on training, testing and deployment.

Quick Start Examples

Install

Python >= 3.6.0 required with all requirements.txt dependencies installed:

$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt
Inference

Inference with YOLOv5 and PyTorch Hub. Models automatically download from the latest YOLOv5 release.

import torch

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # or yolov5m, yolov5x, custom

# Images
img = 'https://ultralytics.com/images/zidane.jpg'  # or file, PIL, OpenCV, numpy, multiple

# Inference
results = model(img)

# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.
Inference with detect.py

detect.py runs inference on a variety of sources, downloading models automatically from the latest YOLOv5 release and saving results to runs/detect.

$ python detect.py --source 0  # webcam
                            file.jpg  # image 
                            file.mp4  # video
                            path/  # directory
                            path/*.jpg  # glob
                            'https://youtu.be/NUsoVlDFqZg'  # YouTube video
                            'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
Training

Run commands below to reproduce results on COCO dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest --batch-size your GPU allows (batch sizes shown for 16 GB devices).

$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
                                         yolov5m                                40
                                         yolov5l                                24
                                         yolov5x                                16
Tutorials

Environments and Integrations

Get started in seconds with our verified environments and integrations, including Weights & Biases for automatic YOLOv5 experiment logging. Click each icon below for details.

Compete and Win

We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competition with $10,000 in cash prizes!

Why YOLOv5

YOLOv5-P5 640 Figure (click to expand)

Figure Notes (click to expand)
  • GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
  • EfficientDet data from google/automl at batch size 8.
  • Reproduce by python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt

Pretrained Checkpoints

Model size
(pixels)
mAPval
0.5:0.95
mAPtest
0.5:0.95
mAPval
0.5
Speed
V100 (ms)
params
(M)
FLOPs
640 (B)
YOLOv5s 640 36.7 36.7 55.4 2.0 7.3 17.0
YOLOv5m 640 44.5 44.5 63.1 2.7 21.4 51.3
YOLOv5l 640 48.2 48.2 66.9 3.8 47.0 115.4
YOLOv5x 640 50.4 50.4 68.8 6.1 87.7 218.8
YOLOv5s6 1280 43.3 43.3 61.9 4.3 12.7 17.4
YOLOv5m6 1280 50.5 50.5 68.7 8.4 35.9 52.4
YOLOv5l6 1280 53.4 53.4 71.1 12.3 77.2 117.7
YOLOv5x6 1280 54.4 54.4 72.0 22.4 141.8 222.9
YOLOv5x6 TTA 1280 55.0 55.0 72.0 70.8 - -
Table Notes (click to expand)
  • APtest denotes COCO test-dev2017 server results, all other AP results denote val2017 accuracy.
  • AP values are for single-model single-scale unless otherwise noted. Reproduce mAP by python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65
  • SpeedGPU averaged over 5000 COCO val2017 images using a GCP n1-standard-16 V100 instance, and includes FP16 inference, postprocessing and NMS. Reproduce speed by python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45
  • All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
  • Test Time Augmentation (TTA) includes reflection and scale augmentation. Reproduce TTA by python val.py --data coco.yaml --img 1536 --iou 0.7 --augment

Contribute

We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our Contributing Guide to get started.

Contact

For issues running YOLOv5 please visit GitHub Issues. For business or professional support requests please visit https://ultralytics.com/contact.


Owner
Laughing
Laughing
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
Spectralformer: Rethinking hyperspectral image classification with transformers

Spectralformer: Rethinking hyperspectral image classification with transformers Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang, Antonio Plaza

Danfeng Hong 102 Dec 29, 2022
State-to-Distribution (STD) Model

State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo

<a href=[email protected]"> 2 Apr 07, 2022
This is official implementaion of paper "Token Shift Transformer for Video Classification".

This is official implementaion of paper "Token Shift Transformer for Video Classification". We achieve SOTA performance 80.40% on Kinetics-400 val. Paper link

VideoNet 60 Dec 30, 2022
This repo contains implementation of different architectures for emotion recognition in conversations.

Emotion Recognition in Conversations Updates 🔥 🔥 🔥 Date Announcements 03/08/2021 🎆 🎆 We have released a new dataset M2H2: A Multimodal Multiparty

Deep Cognition and Language Research (DeCLaRe) Lab 1k Dec 30, 2022
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear

Fan Zhou 2 Apr 17, 2022
Natural Intelligence is still a pretty good idea.

Human Learn Machine Learning models should play by the rules, literally. Project Goal Back in the old days, it was common to write rule-based systems.

vincent d warmerdam 641 Dec 26, 2022
TLDR: Twin Learning for Dimensionality Reduction

TLDR (Twin Learning for Dimensionality Reduction) is an unsupervised dimensionality reduction method that combines neighborhood embedding learning with the simplicity and effectiveness of recent self

NAVER 105 Dec 28, 2022
Pytorch Code for "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation"

Medical-Transformer Pytorch Code for the paper "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation" About this repo: This repo

Jeya Maria Jose 615 Dec 25, 2022
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
This is an official implementation for "Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation".

Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation This repo is the official implementation of Exploiting Temporal Con

Vegetabird 241 Jan 07, 2023
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
Azion the best solution of Edge Computing in the world.

Azion Edge Function docker action Create or update an Edge Functions on Azion Edge Nodes. The domain name is the key for decision to a create or updat

8 Jul 16, 2022
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions

Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr

Seyma Yucer 2 Jun 27, 2022
Inferred Model-based Fuzzer

IMF: Inferred Model-based Fuzzer IMF is a kernel API fuzzer that leverages an automated API model inferrence techinque proposed in our paper at CCS. I

SoftSec Lab 104 Sep 28, 2022
unofficial pytorch implementation of RefineGAN

RefineGAN unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpa

xinby17 5 Jul 21, 2022
Efficient Training of Visual Transformers with Small Datasets

Official codes for "Efficient Training of Visual Transformers with Small Datasets", NerIPS 2021.

Yahui Liu 112 Dec 25, 2022
Referring Video Object Segmentation

Awesome-Referring-Video-Object-Segmentation Welcome to starts ⭐ & comments 💹 & sharing 😀 !! - 2021.12.12: Recent papers (from 2021) - welcome to ad

Explorer 57 Dec 11, 2022
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022