Opinionated code formatter, just like Python's black code formatter but for Beancount

Overview

beancount-black CircleCI

Opinionated code formatter, just like Python's black code formatter but for Beancount

Try it out online here

Features

  • MIT licensed - based on beancount-parser, a Lark based LALR(1) Beancount syntax parser
  • Extremely fast - 5K+ lines file generated by bean-example can be formatted in around 1 second
  • Section awareness - entries separated by Emac org symbol mark * will be formatted in groups without changing the overall structure
  • Comment preserving - comments are preserved and will be formatted as well
  • Auto column width - calculate maximum column width and adjust accordingly
  • Valid beancount file assumed - please notice that the formatter assumes the given beacnount file is valid, it doesn't not perform any kind of validation

Sponsor

The original project beancount-black was meant to be an internal tool built by Launch Platform LLC for

BeanHub logo

A modern accounting book service based on the most popular open source version control system Git and text-based double entry accounting book software Beancount. We realized adding new entries with BeanHub automatically over time makes beancount file a mess. So obviously, a strong code formatter is needed. While SaaS businesses won't be required to open source an internal tool like this, we still love that the service is only possible because of the open-source tool we are using. We think it would be greatly beneficial for the community to access a tool like this, so we've decided to open source it under MIT license, hope you find this tool useful 😄

Install

To install the formatter, simply run

pip install beancount-black

Usage

Run

bean-black /path/to/file.bean

Then the file will be formatted. Since this tool is still in its early stage, a backup file at <filepath>.backup will be created automatically by default just in case. The creation of backup files can be disabled by passing -n or --no-backup like this

bean-black -n /path/to/file.bean

It's highly recommended to use BeanHub, Git or other version control system to track your Beancount book files before running the formatter against them without a backup.

If you want to run the formatter programmatically, you can do this

import io

from beancount_parser.parser import make_parser
from beancount_black.formatter import Formatter

parser = make_parser()
formatter = Formatter()

tree = parser.parse(beancount_content)
output_file = io.StringIO()
formatter.format(tree, output_file)

Future features

  • Add argument for renaming account and commodity
  • Add argument for following other files from include statements and also format those files

Feedbacks, bugs reporting or feature requests are welcome 🙌 , just please open an issue. No guarantee we have time to deal with them, but will see what we can do.

Owner
Launch Platform
We build & launch innovative software products
Launch Platform
PyTorch module to use OpenFace's nn4.small2.v1.t7 model

OpenFace for Pytorch Disclaimer: This codes require the input face-images that are aligned and cropped in the same way of the original OpenFace. * I m

Pete Tae-hoon Kim 176 Dec 12, 2022
Simple image captioning model - CLIP prefix captioning.

CLIP prefix captioning. Inference Notebook: 🥳 New: 🥳 Our technical papar is finally out! Official implementation for the paper "ClipCap: CLIP Prefix

688 Jan 04, 2023
DABO: Data Augmentation with Bilevel Optimization

DABO: Data Augmentation with Bilevel Optimization [Paper] The goal is to automatically learn an efficient data augmentation regime for image classific

ElementAI 24 Aug 12, 2022
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022
Devkit for 3D -- Some utils for 3D object detection based on Numpy and Pytorch

D3D Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch Please consider siting my work if you find this library

Jacob Zhong 27 Jul 07, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
The hippynn python package - a modular library for atomistic machine learning with pytorch.

The hippynn python package - a modular library for atomistic machine learning with pytorch. We aim to provide a powerful library for the training of a

Los Alamos National Laboratory 37 Dec 29, 2022
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022
This is a Image aid classification software based on python TK library development

This is a Image aid classification software based on python TK library development.

EasonChan 1 Jan 17, 2022
Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transformers to Guarantee TopologyPreservation in Segmentations"

TEDS-Net Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transfo

Madeleine K Wyburd 14 Jan 04, 2023
Neural Point-Based Graphics

Neural Point-Based Graphics Project   Video   Paper Neural Point-Based Graphics Kara-Ali Aliev1 Artem Sevastopolsky1,2 Maria Kolos1,2 Dmitry Ulyanov3

Ali Aliev 252 Dec 13, 2022
Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

DeepMind 506 Jan 08, 2023
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
Header-only library for using Keras models in C++.

frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would

Tobias Hermann 927 Jan 05, 2023
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022