ParmeSan: Sanitizer-guided Greybox Fuzzing

Related tags

Deep Learningparmesan
Overview

ParmeSan: Sanitizer-guided Greybox Fuzzing

License

ParmeSan is a sanitizer-guided greybox fuzzer based on Angora.

Published Work

USENIX Security 2020: ParmeSan: Sanitizer-guided Greybox Fuzzing.

The paper can be found here: ParmeSan: Sanitizer-guided Greybox Fuzzing

Building ParmeSan

See the instructions for Angora.

Basically run the following scripts to install the dependencies and build ParmeSan:

build/install_rust.sh
PREFIX=/path/to/install/llvm build/install_llvm.sh
build/install_tools.sh
build/build.sh

ParmeSan also builds a tool bin/llvm-diff-parmesan, which can be used for target acquisition.

Building a target

First build your program into a bitcode file using clang (e.g., base64.bc). Then build your target in the same way, but with your selected sanitizer enabled. To get a single bitcode file for larger projects, the easiest solution is to use gllvm.

# Build the bitcode files for target acquisition
USE_FAST=1 $(pwd)/bin/angora-clang -emit-llvm -o base64.fast.bc -c base64.bc
USE_FAST=1 $(pwd)/bin/angora-clang -fsanitize=address -emit-llvm -o base64.fast.asan.bc -c base64.bc
# Build the actual binaries to be fuzzed
USE_FAST=1 $(pwd)/bin/angora-clang -o base64.fast -c base64.bc
USE_TRACK=1 $(pwd)/bin/angora-clang -o base64.track -c base64.bc

Then acquire the targets using:

bin/llvm-diff-parmesan -json base64.fast.bc base64.fast.asan.bc

This will output a file targets.json, which you provide to ParmeSan with the -c flag.

For example:

$(pwd)/bin/fuzzer -c ./targets.json -i in -o out -t ./base64.track -- ./base64.fast -d @@

Options

ParmeSan's SanOpt option can speed up the fuzzing process by dynamically switching over to a sanitized binary only once the fuzzer reaches one of the targets specified in the targets.json file.

Enable using the -s [SANITIZED_BIN] option.

Build the sanitized binary in the following way:

USE_FAST=1 $(pwd)/bin/angora-clang -fsanitize=address -o base64.asan.fast -c base64.bc

Targets input file

The targets input file consisit of a JSON file with the following format:

{
  "targets":  [1,2,3,4],
  "edges":   [[1,2], [2,3]],
  "callsite_dominators": {"1": [3,4,5]}
}

Where the targets denote the identify of the cmp instruction to target (i.e., the id assigned by the __angora_trace_cmp() calls) and edges is the overlay graph of cmp ids (i.e., which cmps are connected to each other). The edges filed can be empty, since ParmeSan will add newly discovered edges automatically, but note that the performance will be better if you provide the static CFG.

It is also possible to run ParmeSan in pure directed mode (-D option), meaning that it will only consider new seeds if the seed triggers coverage that is on a direct path to one of the specified targets. Note that this requires a somewhat complete static CFG to work (an incomplete CFG might contain no paths to the targets at all, which would mean that no new coverage will be considered at all).

ParmeSan Screenshot

How to get started

Have a look at BUILD_TARGET.md for a step-by-step tutorial on how to get started fuzzing with ParmeSan.

FAQ

  • Q: I get a warning like ==1561377==WARNING: DataFlowSanitizer: call to uninstrumented function gettext when running the (track) instrumented program.
  • A: In many cases you can ignore this, but it will lose the taint (meaning worse performance). You need to add the function to the abilist (e.g., llvm_mode/dfsan_rt/dfsan/done_abilist.txt) and add a custom DFSan wrapper (in llvm_mode/dfsan_rt/dfsan/dfsan_custom.cc). See the Angora documentation for more info.
  • Q: I get an compiler error when building the track binary.
  • A: ParmeSan/ Angora uses DFSan for dynamic data-flow analysis. In certain cases building target applications can be a bit tricky (especially in the case of C++ targets). Make sure to disable as much inline assembly as possible and make sure that you link the correct libraries/ llvm libc++. Some programs also do weird stuff like an indirect call to a vararg function. This is not supported by DFSan at the moment, so the easy solution is to patch out these calls, or do something like indirect call promotion.
  • Q: llvm-diff-parmesan generates too many targets!
  • A: You can do target pruning using the scripts in tools/ (in particular tools/prune.py) or use ASAP to generate a target bitcode file with fewer sanitizer targets.

Docker image

You can also get the pre-built docker image of ParmeSan.

docker pull vusec/parmesan
docker run --rm -it vusec/parmesan
# In the container you can build objdump
/parmesan/misc/build_objdump.sh
Owner
VUSec
VUSec
Automatically align face images 🙃→🙂. Can also do windowing and warping.

Automatic Face Alignment (AFA) Carl M. Gaspar & Oliver G.B. Garrod You have lots of photos of faces like this: But you want to line up all of the face

Carl Michael Gaspar 15 Dec 12, 2022
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples

Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples This repository is the official implementation of paper [Qimera: Data-free Q

Kanghyun Choi 21 Nov 03, 2022
Unofficial reimplementation of ECAPA-TDNN for speaker recognition (EER=0.86 for Vox1_O when train only in Vox2)

Introduction This repository contains my unofficial reimplementation of the standard ECAPA-TDNN, which is the speaker recognition in VoxCeleb2 dataset

Tao Ruijie 277 Dec 31, 2022
Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022

This is our implementation for the paper: Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation Xiaokun Zhang, Bo

Xiaokun Zhang 27 Dec 02, 2022
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

Yunxia Zhao 3 Dec 29, 2022
HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton

HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton Wencan Cheng, Jae Hyun Park, Jong

cwc1260 23 Oct 21, 2022
Acute ischemic stroke dataset

AISD Acute ischemic stroke dataset contains 397 Non-Contrast-enhanced CT (NCCT) scans of acute ischemic stroke with the interval from symptom onset to

Kongming Liang 21 Sep 06, 2022
PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation

PyGRANSO PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation Please check https://ncvx.org/PyGRANSO for detailed instructions (introd

SUN Group @ UMN 26 Nov 16, 2022
A minimalist tool to display a network graph.

A tool to get a minimalist view of any architecture This tool has only be tested with the models included in this repo. Therefore, I can't guarantee t

Thibault Castells 1 Feb 11, 2022
Playable Video Generation

Playable Video Generation Playable Video Generation Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci Paper: ArX

Willi Menapace 136 Dec 31, 2022
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

1.4k Jan 05, 2023
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

peng gao 42 Nov 26, 2022
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

562 Jan 02, 2023
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
Robust Consistent Video Depth Estimation

[CVPR 2021] Robust Consistent Video Depth Estimation This repository contains Python and C++ implementation of Robust Consistent Video Depth, as descr

Facebook Research 213 Dec 17, 2022
PyTorch Connectomics: segmentation toolbox for EM connectomics

Introduction The field of connectomics aims to reconstruct the wiring diagram of the brain by mapping the neural connections at the level of individua

Zudi Lin 132 Dec 26, 2022
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.

Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a

Yuxiao Zhou 49 Dec 05, 2022
existing and custom freqtrade strategies supporting the new hyperstrategy format.

freqtrade-strategies Description Existing and self-developed strategies, rewritten to support the new HyperStrategy format from the freqtrade-develop

39 Aug 20, 2021
A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."

EfficientNet A PyTorch implementation of EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. [arxiv] [Official TF Repo] Implemen

AhnDW 298 Dec 10, 2022