SparseInst: Sparse Instance Activation for Real-Time Instance Segmentation, CVPR 2022

Overview

SparseInst ๐Ÿš€

A simple framework for real-time instance segmentation, CVPR 2022
by
Tianheng Cheng, Xinggang Wangโ€ , Shaoyu Chen, Wenqiang Zhang, Qian Zhang, Chang Huang, Zhaoxiang Zhang, Wenyu Liu
(โ€ : corresponding author)

Highlights



PWC

  • SparseInst presents a new object representation method, i.e., Instance Activation Maps (IAM), to adaptively highlight informative regions of objects for recognition.
  • SparseInst is a simple, efficient, and fully convolutional framework without non-maximum suppression (NMS) or sorting, and easy to deploy!
  • SparseInst achieves good trade-off between speed and accuracy, e.g., 37.9 AP and 40 FPS with 608x input.

Updates

This project is under active development, please stay tuned! โ˜•

  • [2022-4-29]: We fix the common issue about the visualization demo.py, e.g., ValueError: GenericMask cannot handle ....

  • [2022-4-7]: We provide the demo code for visualization and inference on images. Besides, we have added more backbones for SparseInst, including ResNet-101, CSPDarkNet, and PvTv2. We are still supporting more backbones.

  • [2022-3-25]: We have released the code and models for SparseInst!

Overview

SparseInst is a conceptually novel, efficient, and fully convolutional framework for real-time instance segmentation. In contrast to region boxes or anchors (centers), SparseInst adopts a sparse set of instance activation maps as object representation, to highlight informative regions for each foreground objects. Then it obtains the instance-level features by aggregating features according to the highlighted regions for recognition and segmentation. The bipartite matching compels the instance activation maps to predict objects in a one-to-one style, thus avoiding non-maximum suppression (NMS) in post-processing. Owing to the simple yet effective designs with instance activation maps, SparseInst has extremely fast inference speed and achieves 40 FPS and 37.9 AP on COCO (NVIDIA 2080Ti), significantly outperforms the counter parts in terms of speed and accuracy.

Models

We provide two versions of SparseInst, i.e., the basic IAM (3x3 convolution) and the Group IAM (G-IAM for short), with different backbones. All models are trained on MS-COCO train2017.

Fast models

model backbone input aug APval AP FPS weights
SparseInst R-50 640 โœ˜ 32.8 33.2 44.3 model
SparseInst R-50-vd 640 โœ˜ 34.1 34.5 42.6 model
SparseInst (G-IAM) R-50 608 โœ˜ 33.4 34.0 44.6 model
SparseInst (G-IAM) R-50 608 โœ“ 34.2 34.7 44.6 model
SparseInst (G-IAM) R-50-DCN 608 โœ“ 36.4 36.8 41.6 model
SparseInst (G-IAM) R-50-vd 608 โœ“ 35.6 36.1 42.8 model
SparseInst (G-IAM) R-50-vd-DCN 608 โœ“ 37.4 37.9 40.0 model
SparseInst (G-IAM) R-50-vd-DCN 640 โœ“ 37.7 38.1 39.3 model

Larger models

model backbone input aug APval AP FPS weights
SparseInst (G-IAM) R-101 640 โœ˜ 34.9 35.5 - model
SparseInst (G-IAM) R-101-DCN 640 โœ˜ 36.4 36.9 - model

SparseInst with Vision Transformers

model backbone input aug APval AP FPS weights
SparseInst (G-IAM) PVTv2-B1 640 โœ˜ 35.3 36.0 33.5 (48.9โ†ก) model
SparseInst (G-IAM) PVTv2-B2-li 640 โœ˜ 37.2 38.2 26.5 model

โ†ก: measured on RTX 3090.

Note:

  • We will continue adding more models including more efficient convolutional networks, vision transformers, and larger models for high performance and high speed, please stay tuned ๐Ÿ˜ !
  • Inference speeds are measured on one NVIDIA 2080Ti unless specified.
  • We haven't adopt TensorRT or other tools to accelerate the inference of SparseInst. However, we are working on it now and will provide support for ONNX, TensorRT, MindSpore, Blade, and other frameworks as soon as possible!
  • AP denotes AP evaluated on MS-COCO test-dev2017
  • input denotes the shorter side of the input, e.g., 512x864 and 608x864, we keep the aspect ratio of the input and the longer side is no more than 864.
  • The inference speed might slightly change on different machines (2080 Ti) and different versions of detectron (we mainly use v0.3). If the change is sharp, e.g., > 5ms, please feel free to contact us.
  • For aug (augmentation), we only adopt the simple random crop (crop size: [384, 600]) provided by detectron2.
  • We adopt weight decay=5e-2 as default setting, which is slightly different from the original paper.
  • [Weights on BaiduPan]: we also provide trained models on BaiduPan: ShareLink (password: lkdo).

Installation and Prerequisites

This project is built upon the excellent framework detectron2, and you should install detectron2 first, please check official installation guide for more details.

Note: we mainly use v0.3 of detectron2 for experiments and evaluations. Besides, we also test our code on the newest version v0.6. If you find some bugs or incompatibility problems of higher version of detectron2, please feel free to raise a issue!

Install the detectron2:

git clone https://github.com/facebookresearch/detectron2.git
# if you swith to a specific version, e.g., v0.3 (recommended)
git checkout tags/v0.3
# build detectron2
python setup.py build develop

Getting Start

Testing SparseInst

Before testing, you should specify the config file <CONFIG> and the model weights <MODEL-PATH>. In addition, you can change the input size by setting the INPUT.MIN_SIZE_TEST in both config file or commandline.

  • [Performance Evaluation] To obtain the evaluation results, e.g., mask AP on COCO, you can run:
python train_net.py --config-file <CONFIG> --num-gpus <GPUS> --eval MODEL.WEIGHTS <MODEL-PATH>
# example:
python train_net.py --config-file configs/sparse_inst_r50_giam.yaml --num-gpus 8 --eval MODEL.WEIGHTS sparse_inst_r50_giam_aug_2b7d68.pth
  • [Inference Speed] To obtain the inference speed (FPS) on one GPU device, you can run:
python test_net.py --config-file <CONFIG> MODEL.WEIGHTS <MODEL-PATH> INPUT.MIN_SIZE_TEST 512
# example:
python test_net.py --config-file configs/sparse_inst_r50_giam.yaml MODEL.WEIGHTS sparse_inst_r50_giam_aug_2b7d68.pth INPUT.MIN_SIZE_TEST 512

Note:

  • The test_net.py only supports 1 GPU and 1 image per batch for measuring inference speed.
  • The inference time consists of the pure forward time and the post-processing time. While the evaluation processing, data loading, and pre-processing for wrappers (e.g., ImageList) are not included.
  • COCOMaskEvaluator is modified from COCOEvaluator for evaluating mask-only results.

Visualizing Images with SparseInst

To inference or visualize the segmentation results on your images, you can run:

python demo.py --config-file <CONFIG> --input <IMAGE-PATH> --output results --opts MODEL.WEIGHTS <MODEL-PATH>
# example
python demo.py --config-file configs/sparse_inst_r50_giam.yaml --input datasets/coco/val2017/* --output results --opt MODEL.WEIGHTS sparse_inst_r50_giam_aug_2b7d68.pth INPUT.MIN_SIZE_TEST 512
  • Besides, the demo.py also supports inference on video (--video-input), camera (--webcam). For inference on video, you might refer to issue #9 to avoid someerrors.
  • --opts supports modifications to the config-file, e.g., INPUT.MIN_SIZE_TEST 512.
  • --input can be single image or a folder of images, e.g., xxx/*.
  • If --output is not specified, a popup window will show the visualization results for each image.
  • Lowering the confidence-threshold will show more instances but with more false positives.

Visualization results (SparseInst-R50-GIAM)

Training SparseInst

To train the SparseInst model on COCO dataset with 8 GPUs. 8 GPUs are required for the training. If you only have 4 GPUs or GPU memory is limited, it doesn't matter and you can reduce the batch size through SOLVER.IMS_PER_BATCH or reduce the input size. If you adjust the batch size, learning schedule should be adjusted according to the linear scaling rule.

python train_net.py --config-file <CONFIG> --num-gpus 8 
# example
python train_net.py --config-file configs/sparse_inst_r50vd_dcn_giam_aug.yaml --num-gpus 8

Acknowledgements

SparseInst is based on detectron2, OneNet, DETR, and timm, and we sincerely thanks for their code and contribution to the community!

Citing SparseInst

If you find SparseInst is useful in your research or applications, please consider giving us a star ๐ŸŒŸ and citing SparseInst by the following BibTeX entry.

@inproceedings{Cheng2022SparseInst,
  title     =   {Sparse Instance Activation for Real-Time Instance Segmentation},
  author    =   {Cheng, Tianheng and Wang, Xinggang and Chen, Shaoyu and Zhang, Wenqiang and Zhang, Qian and Huang, Chang and Zhang, Zhaoxiang and Liu, Wenyu},
  booktitle =   {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
  year      =   {2022}
}

License

SparseInst is released under the MIT Licence.

Owner
Hust Visual Learning Team
Hust Visual Learning Team belongs to the Artificial Intelligence Research Institute in the School of EIC in HUST, Lead by @xinggangw
Hust Visual Learning Team
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
A Player for Kanye West's Stem Player. Sort of an emulator.

Stem Player Player Stem Player Player Usage Download the latest release here Optional: install ffmpeg, instructions here NOTE: DOES NOT ENABLE DOWNLOA

119 Dec 28, 2022
Making Structure-from-Motion (COLMAP) more robust to symmetries and duplicated structures

SfM disambiguation with COLMAP About Structure-from-Motion generally fails when the scene exhibits symmetries and duplicated structures. In this repos

Computer Vision and Geometry Lab 193 Dec 26, 2022
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

ROCKET + MINIROCKET ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge D

298 Dec 26, 2022
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
Official code repository for "Exploring Neural Models for Query-Focused Summarization"

Query-Focused Summarization Official code repository for "Exploring Neural Models for Query-Focused Summarization" This is a work in progress. Expect

Salesforce 29 Dec 18, 2022
PyMove is a Python library to simplify queries and visualization of trajectories and other spatial-temporal data

Use PyMove and go much further Information Package Status License Python Version Platforms Build Status PyPi version PyPi Downloads Conda version Cond

Insight Data Science Lab 64 Nov 15, 2022
Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021
Powerful unsupervised domain adaptation method for dense retrieval.

Powerful unsupervised domain adaptation method for dense retrieval

Ubiquitous Knowledge Processing Lab 191 Dec 28, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

dm_robotics: Libraries, tools, and tasks created and used for Robotics research at DeepMind. Package overview Package Summary Transformations Rigid bo

DeepMind 273 Jan 06, 2023
Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph

Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph Model Description Open-CyKG is a framework that is constructed using an attenti

Injy Sarhan 34 Jan 05, 2023
Robotics with GPU computing

Robotics with GPU computing Cupoch is a library that implements rapid 3D data processing for robotics using CUDA. The goal of this library is to imple

Shirokuma 625 Jan 07, 2023
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021
KazuhitoTakahashi 41 Nov 23, 2022
An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and Machine Learning.

ALgorithmic_Trading_with_ML An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and

1 Mar 14, 2022
Pytorch implementation of the paper Time-series Generative Adversarial Networks

TimeGAN-pytorch Pytorch implementation of the paper Time-series Generative Adversarial Networks presented at NeurIPS'19. Jinsung Yoon, Daniel Jarrett

Zhiwei ZHANG 21 Nov 24, 2022
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
Data reduction pipeline for KOALA on the AAT.

KOALA KOALA, the Kilofibre Optical AAT Lenslet Array, is a wide-field, high efficiency, integral field unit used by the AAOmega spectrograph on the 3.

4 Sep 26, 2022
Recreate CenternetV2 based on MMDET.

Introduction This project is trying to Recreate CenternetV2 based on MMDET, which is proposed in paper Probabilistic two-stage detection. This project

25 Dec 09, 2022
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 04, 2022