An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and Machine Learning.

Overview

ALgorithmic_Trading_with_ML

An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and Machine Learning.

The following steps are followed :

  • Establishing a Baseline Performance
  • Tuning the Baseline Trading Algorithm
  • Evaluating a New Machine Learning Classifier
  • Creating an Evaluation Report

Establishing a Baseline Performance

  1. Importing the OHLCV dataset into a Pandas DataFrame.

  2. Trading signals are created using short- and long-window SMA values.

svm_original_report

  1. The data is splitted into training and testing datasets.

  2. Using the SVC classifier model from SKLearn's support vector machine (SVM) learning method to fit the training data and making predictions based on the testing data. Reviewing the predictions.

  3. Reviewing the classification report associated with the SVC model predictions.

svm_strategy_returns

  1. Creating a predictions DataFrame that contains columns for “Predicted” values, “Actual Returns”, and “Strategy Returns”.

  2. Creating a cumulative return plot that shows the actual returns vs. the strategy returns. Save a PNG image of this plot. This will serve as a baseline against which to compare the effects of tuning the trading algorithm.

Actual_Returns_Vs_SVM_Original_Returns


Tune the Baseline Trading Algorithm

The model’s input features are tuned to find the parameters that result in the best trading outcomes. The cumulative products of the strategy returns are compared. Below steps are followed:

  1. The training algorithm is tuned by adjusting the size of the training dataset. To do so, slice your data into different periods.

10_month_svm_report 24_month_sw_4_lw_100_report 48month_sw_4_lw_100_report

Answer the following question: What impact resulted from increasing or decreasing the training window?

Increasing the training dataset size alone did not improve the returns prediction. The precision and recall values for class -1 improved with increase in training set data and presion and recall values for class 1 decreased compared to the original training daatset size(3 months)

  1. The trading algorithm is tuned by adjusting the SMA input features. Adjusting one or both of the windows for the algorithm.

Answer the following question: What impact resulted from increasing or decreasing either or both of the SMA windows?

  • Increasing the short window for SMA increased impacted the precision and recall scores. It improves these scores till certain limit and then the scores decreases.
  • While increasing the short window when we equally incresase the long window we could achieve optimal maximized scores.
  • Another interesting obervation is that when the training dataset increses the short window and long window has to be incresed to get maximum output.

3_month_sw_8_lw_100_report

The set of parameters that best improved the trading algorithm returns. 48_month_sw_10_lw_270_report 48_month_sw_10_lw_270_return_comparison


Evaluating a New Machine Learning Classifier

The original parameters are applied to a second machine learning model to find its performance. To do so, below steps are followed:

  1. Importing a new classifier, we chose LogisticRegression as our new classifier.

  2. Using the original training data we fit the Logistic regression model.

  3. The Logistic Regression model is backtested to evaluate its performance.

Answer the following questions: Did this new model perform better or worse than the provided baseline model? Did this new model perform better or worse than your tuned trading algorithm?

This new model performed good but not as well as our provided baseline model or the tuned trading algorithm.

lr_report lr_return_comparison

The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio

Shikun Liu 128 Dec 30, 2022
The 3rd place solution for competition

The 3rd place solution for competition "Lyft Motion Prediction for Autonomous Vehicles" at Kaggle Team behind this solution: Artsiom Sanakoyeu [Homepa

Artsiom 104 Nov 22, 2022
A new video text spotting framework with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 67 Jan 03, 2023
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
Code accompanying "Adaptive Methods for Aggregated Domain Generalization"

Adaptive Methods for Aggregated Domain Generalization (AdaClust) Official Pytorch Implementation of Adaptive Methods for Aggregated Domain Generalizat

Xavier Thomas 15 Sep 20, 2022
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
(ICONIP 2020) MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image

MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image This repo contains the source code for MobileHand, real-time estimation of 3D

90 Dec 12, 2022
PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids The electric grid is a key enabling infrastructure for the a

Texas A&M Engineering Research 19 Jan 07, 2023
The pytorch implementation of the paper "text-guided neural image inpainting" at MM'2020

TDANet: Text-Guided Neural Image Inpainting, MM'2020 (Oral) MM | ArXiv This repository implements the paper "Text-Guided Neural Image Inpainting" by L

LisaiZhang 75 Dec 22, 2022
Deep-Learning-Image-Captioning - Implementing convolutional and recurrent neural networks in Keras to generate sentence descriptions of images

Deep Learning - Image Captioning with Convolutional and Recurrent Neural Nets ========================================================================

23 Apr 06, 2022
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
Neighborhood Reconstructing Autoencoders

Neighborhood Reconstructing Autoencoders The official repository for Neighborhood Reconstructing Autoencoders (Lee, Kwon, and Park, NeurIPS 2021). T

Yonghyeon Lee 24 Dec 14, 2022
An educational AI robot based on NVIDIA Jetson Nano.

JetBot Looking for a quick way to get started with JetBot? Many third party kits are now available! JetBot is an open-source robot based on NVIDIA Jet

NVIDIA AI IOT 2.6k Dec 29, 2022
AOT (Associating Objects with Transformers) in PyTorch

An efficient modular implementation of Associating Objects with Transformers for Video Object Segmentation in PyTorch

162 Dec 14, 2022
Efficient face emotion recognition in photos and videos

This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficien

Andrey Savchenko 239 Jan 04, 2023
Fast and simple implementation of RL algorithms, designed to run fully on GPU.

RSL RL Fast and simple implementation of RL algorithms, designed to run fully on GPU. This code is an evolution of rl-pytorch provided with NVIDIA's I

Robotic Systems Lab - Legged Robotics at ETH Zürich 68 Dec 29, 2022
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
Optimize Trading Strategies Using Freqtrade

Optimize trading strategy using Freqtrade Short demo on building, testing and optimizing a trading strategy using Freqtrade. The DevBootstrap YouTube

DevBootstrap 139 Jan 01, 2023