PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

Related tags

Deep LearningMAE-priv
Overview

MAE for Self-supervised ViT

Introduction

This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

This repo is mainly based on moco-v3, pytorch-image-models and BEiT

TODO

  • visualization of reconstruction image
  • linear prob
  • more results
  • transfer learning
  • ...

Main Results

The following results are based on ImageNet-1k self-supervised pre-training, followed by ImageNet-1k supervised training for linear evaluation or end-to-end fine-tuning.

Vit-Base

pretrain
epochs
with
pixel-norm
linear
acc
fine-tuning
acc
100 False -- 75.58 [1]
100 True -- 77.19
800 True -- --

On 8 NVIDIA GeForce RTX 3090 GPUs, pretrain for 100 epochs needs about 9 hours, 4096 batch size needs about 24 GB GPU memory.

[1]. fine-tuning for 50 epochs;

Vit-Large

pretrain
epochs
with
pixel-norm
linear
acc
fine-tuning
acc
100 False -- --
100 True -- --

On 8 NVIDIA A40 GPUs, pretrain for 100 epochs needs about 34 hours, 4096 batch size needs about xx GB GPU memory.

Usage: Preparation

The code has been tested with CUDA 11.4, PyTorch 1.8.2.

Notes:

  1. The batch size specified by -b is the total batch size across all GPUs from all nodes.
  2. The learning rate specified by --lr is the base lr (corresponding to 256 batch-size), and is adjusted by the linear lr scaling rule.
  3. In this repo, only multi-gpu, DistributedDataParallel training is supported; single-gpu or DataParallel training is not supported. This code is improved to better suit the multi-node setting, and by default uses automatic mixed-precision for pre-training.
  4. Only pretraining and finetuning have been tested.

Usage: Self-supervised Pre-Training

Below is examples for MAE pre-training.

ViT-Base with 1-node (8-GPU, NVIDIA GeForce RTX 3090) training, batch 4096

python main_mae.py \
  -c cfgs/ViT-B16_ImageNet1K_pretrain.yaml \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  [your imagenet-folder with train and val folders]

or

sh train_mae.sh

ViT-Large with 1-node (8-GPU, NVIDIA A40) pre-training, batch 2048

python main_mae.py \
  -c cfgs/ViT-L16_ImageNet1K_pretrain.yaml \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  [your imagenet-folder with train and val folders]

Usage: End-to-End Fine-tuning ViT

Below is examples for MAE fine-tuning.

ViT-Base with 1-node (8-GPU, NVIDIA GeForce RTX 3090) training, batch 1024

python main_fintune.py \
  -c cfgs/ViT-B16_ImageNet1K_finetune.yaml \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  [your imagenet-folder with train and val folders]

ViT-Large with 2-node (16-GPU, 8 NVIDIA GeForce RTX 3090 + 8 NVIDIA A40) training, batch 512

python main_fintune.py \
  -c cfgs/ViT-B16_ImageNet1K_finetune.yaml \
  --multiprocessing-distributed --world-size 2 --rank 0 \
  [your imagenet-folder with train and val folders]

On another node, run the same command with --rank 1.

Note:

  1. We use --resume rather than --finetune in the DeiT repo, as its --finetune option trains under eval mode. When loading the pre-trained model, revise model_without_ddp.load_state_dict(checkpoint['model']) with strict=False.

[TODO] Usage: Linear Classification

By default, we use momentum-SGD and a batch size of 1024 for linear classification on frozen features/weights. This can be done with a single 8-GPU node.

python main_lincls.py \
  -a [architecture] --lr [learning rate] \
  --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  --pretrained [your checkpoint path]/[your checkpoint file].pth.tar \
  [your imagenet-folder with train and val folders]

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details.

Citation

If you use the code of this repo, please cite the original papre and this repo:

@Article{he2021mae,
  author  = {Kaiming He* and Xinlei Chen* and Saining Xie and Yanghao Li and Piotr Dolla ́r and Ross Girshick},
  title   = {Masked Autoencoders Are Scalable Vision Learners},
  journal = {arXiv preprint arXiv:2111.06377},
  year    = {2021},
}
@misc{yang2021maepriv,
  author       = {Lu Yang* and Pu Cao* and Yang Nie and Qing Song},
  title        = {MAE-priv},
  howpublished = {\url{https://github.com/BUPT-PRIV/MAE-priv}},
  year         = {2021},
}
The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022
Robust and Accurate Object Detection via Self-Knowledge Distillation

Robust and Accurate Object Detection via Self-Knowledge Distillation paper:https://arxiv.org/abs/2111.07239 Environments Python 3.7 Cuda 10.1 Prepare

Weipeng Xu 6 Jul 01, 2022
[ICCV 2021 Oral] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo

NerfingMVS Project Page | Paper | Video | Data NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo Yi Wei, Shaohui

Yi Wei 369 Dec 24, 2022
A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization

sam.pytorch A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization ( Foret+2020) Paper, Official implementa

Ryuichiro Hataya 102 Dec 28, 2022
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norén 21.8k Jan 09, 2023
SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation

SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation This repo is the official implementation for SegTransVAE. Seg

Nguyen Truong Hai 4 Aug 04, 2022
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
Repo for the Video Person Clustering dataset, and code for the associated paper

Video Person Clustering Repo for the Video Person Clustering dataset, and code for the associated paper. This reporsitory contains the Video Person Cl

Andrew Brown 47 Nov 02, 2022
Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Tensor Component Analysis for Interpreting the Latent Space of GANs [ paper | project page ] Code to reproduce the results in the paper "Tensor Compon

James Oldfield 4 Jun 17, 2022
A keras implementation of ENet (abandoned for the foreseeable future)

ENet-keras This is an implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from ENet-training (lua-t

Pavlos 115 Nov 23, 2021
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
The official implementation of the CVPR2021 paper: Decoupled Dynamic Filter Networks

Decoupled Dynamic Filter Networks This repo is the official implementation of CVPR2021 paper: "Decoupled Dynamic Filter Networks". Introduction DDF is

F.S.Fire 180 Dec 30, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Hieu Duong 7 Jan 12, 2022
Includes PyTorch -> Keras model porting code for ConvNeXt family of models with fine-tuning and inference notebooks.

ConvNeXt-TF This repository provides TensorFlow / Keras implementations of different ConvNeXt [1] variants. It also provides the TensorFlow / Keras mo

Sayak Paul 87 Dec 06, 2022
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
An open-source online reverse dictionary.

An open-source online reverse dictionary.

THUNLP 6.3k Jan 09, 2023
R3Det based on mmdet 2.19.0

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object Installation # install mmdetection first if you haven't installed it

SJTU-Thinklab-Det 38 Dec 15, 2022
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

VOS This is the source code accompanying the paper VOS: Learning What You Don’t

248 Dec 25, 2022