Official Repsoitory for "Activate or Not: Learning Customized Activation." [CVPR 2021]

Related tags

Deep Learningacon
Overview

CVPR 2021 | Activate or Not: Learning Customized Activation.

This repository contains the official Pytorch implementation of the paper Activate or Not: Learning Customized Activation, CVPR 2021.

ACON

We propose a novel activation function we term the ACON that explicitly learns to activate the neurons or not. Below we show the ACON activation function and its first derivatives. β controls how fast the first derivative asymptotes to the upper/lower bounds, which are determined by p1 and p2.

Training curves

We show the training curves of different activations here.

TFNet

To show the effectiveness of the proposed acon family, we also provide an extreme simple toy funnel network (TFNet) made only by pointwise convolution and ACON-FReLU operators.

Main results

The following results are the ImageNet top-1 accuracy relative improvements compared with the ReLU baselines. The relative improvements of Meta-ACON are about twice as much as SENet.

The comparison between ReLU, Swish and ACON-C. We show improvements without additional amount of FLOPs and parameters:

Model FLOPs #Params. top-1 err. (ReLU) top-1 err. (Swish) top-1 err. (ACON)
ShuffleNetV2 0.5x 41M 1.4M 39.4 38.3 (+1.1) 37.0 (+2.4)
ShuffleNetV2 1.5x 299M 3.5M 27.4 26.8 (+0.6) 26.5 (+0.9)
ResNet 50 3.9G 25.5M 24.0 23.5 (+0.5) 23.2 (+0.8)
ResNet 101 7.6G 44.4M 22.8 22.7 (+0.1) 21.8 (+1.0)
ResNet 152 11.3G 60.0M 22.3 22.2 (+0.1) 21.2 (+1.1)

Next, by adding a negligible amount of FLOPs and parameters, meta-ACON shows sigificant improvements:

Model FLOPs #Params. top-1 err.
ShuffleNetV2 0.5x (meta-acon) 41M 1.7M 34.8 (+4.6)
ShuffleNetV2 1.5x (meta-acon) 299M 3.9M 24.7 (+2.7)
ResNet 50 (meta-acon) 3.9G 25.7M 22.0 (+2.0)
ResNet 101 (meta-acon) 7.6G 44.8M 21.0 (+1.8)
ResNet 152 (meta-acon) 11.3G 60.5M 20.5 (+1.8)

The simple TFNet without the SE modules can outperform the state-of-the art light-weight networks without the SE modules.

FLOPs #Params. top-1 err.
MobileNetV2 0.17 42M 1.4M 52.6
ShuffleNetV2 0.5x 41M 1.4M 39.4
TFNet 0.5 43M 1.3M 36.6 (+2.8)
MobileNetV2 0.6 141M 2.2M 33.3
ShuffleNetV2 1.0x 146M 2.3M 30.6
TFNet 1.0 135M 1.9M 29.7 (+0.9)
MobileNetV2 1.0 300M 3.4M 28.0
ShuffleNetV2 1.5x 299M 3.5M 27.4
TFNet 1.5 279M 2.7M 26.0 (+1.4)
MobileNetV2 1.4 585M 5.5M 25.3
ShuffleNetV2 2.0x 591M 7.4M 25.0
TFNet 2.0 474M 3.8M 24.3 (+0.7)

Trained Models

  • OneDrive download: Link
  • BaiduYun download: Link (extract code: 13fu)

Usage

Requirements

Download the ImageNet dataset and move validation images to labeled subfolders. To do this, you can use the following script: https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh

Train:

python train.py  --train-dir YOUR_TRAINDATASET_PATH --val-dir YOUR_VALDATASET_PATH

Eval:

python train.py --eval --eval-resume YOUR_WEIGHT_PATH --train-dir YOUR_TRAINDATASET_PATH --val-dir YOUR_VALDATASET_PATH

Citation

If you use these models in your research, please cite:

@inproceedings{ma2021activate,
  title={Activate or Not: Learning Customized Activation},
  author={Ma, Ningning and Zhang, Xiangyu and Liu, Ming and Sun, Jian},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  year={2021}
}
This is a repository for a semantic segmentation inference API using the OpenVINO toolkit

BMW-IntelOpenVINO-Segmentation-Inference-API This is a repository for a semantic segmentation inference API using the OpenVINO toolkit. It's supported

BMW TechOffice MUNICH 34 Nov 24, 2022
Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".

nvdiffrec Joint optimization of topology, materials and lighting from multi-view image observations as described in the paper Extracting Triangular 3D

NVIDIA Research Projects 1.4k Jan 01, 2023
Efficient Deep Learning Systems course

Efficient Deep Learning Systems This repository contains materials for the Efficient Deep Learning Systems course taught at the Faculty of Computer Sc

Max Ryabinin 173 Dec 29, 2022
Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm

DeCLIP Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm. Our paper is available in arxiv Updates ** Ou

Sense-GVT 470 Dec 30, 2022
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

Holy Wu 35 Jan 01, 2023
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

stylegan-human 762 Jan 08, 2023
Chainer implementation of recent GAN variants

Chainer-GAN-lib This repository collects chainer implementation of state-of-the-art GAN algorithms. These codes are evaluated with the inception score

399 Oct 23, 2022
Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstrac

2 Apr 14, 2022
Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies.

Crypto_Bot Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies. Steps to get started using the bot: Sign up

21 Oct 03, 2022
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022
Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

MetaAdaptRank This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot

THUNLP 5 Jun 16, 2022
This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

ICCV Workshop 2021 VTGAN This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

Sharif Amit Kamran 25 Dec 08, 2022
Code for Max-Margin Contrastive Learning - AAAI 2022

Max-Margin Contrastive Learning This is a pytorch implementation for the paper Max-Margin Contrastive Learning accepted to AAAI 2022. This repository

Anshul Shah 12 Oct 22, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
Streamlit component for TensorBoard, TensorFlow's visualization toolkit

streamlit-tensorboard This is a work-in-progress, providing a function to embed TensorBoard, TensorFlow's visualization toolkit, in Streamlit apps. In

Snehan Kekre 27 Nov 13, 2022
This repo. is an implementation of ACFFNet, which is accepted for in Image and Vision Computing.

Attention-Guided-Contextual-Feature-Fusion-Network-for-Salient-Object-Detection This repo. is an implementation of ACFFNet, which is accepted for in I

5 Nov 21, 2022
A custom DeepStack model that has been trained detecting ONLY the USPS logo

This repository provides a custom DeepStack model that has been trained detecting ONLY the USPS logo. This was created after I discovered that the Deepstack OpenLogo custom model I was using did not

Stephen Stratoti 9 Dec 27, 2022
Time should be taken seer-iously

TimeSeers seers - (Noun) plural form of seer - A person who foretells future events by or as if by supernatural means TimeSeers is an hierarchical Bay

279 Dec 26, 2022
A Pythonic library for Nvidia Codec.

A Pythonic library for Nvidia Codec. The project is still in active development; expect breaking changes. Why another Python library for Nvidia Codec?

Zesen Qian 12 Dec 27, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022