Official Implementation of DE-CondDETR and DELA-CondDETR in "Towards Data-Efficient Detection Transformers"

Overview

DE-DETRs

By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao

This repository is an official implementation of DE-CondDETR and DELA-CondDETR in the paper Towards Data-Efficient Detection Transformers.

For the implementation of DE-DETR and DELA-DETR, please refer to DE-DETRs.

Introduction

TL; DR. We identify the data-hungry issue of existing detection transformers and alleviate it by simply alternating how key and value sequences are constructed in the cross-attention layer, with minimum modifications to the original models. Besides, we introduce a simple yet effective label augmentation method to provide richer supervision and improve data efficiency.

DE-DETR

Abstract. Detection Transformers have achieved competitive performance on the sample-rich COCO dataset. However, we show most of them suffer from significant performance drops on small-size datasets, like Cityscapes. In other words, the detection transformers are generally data-hungry. To tackle this problem, we empirically analyze the factors that affect data efficiency, through a step-by-step transition from a data-efficient RCNN variant to the representative DETR. The empirical results suggest that sparse feature sampling from local image areas holds the key. Based on this observation, we alleviate the data-hungry issue of existing detection transformers by simply alternating how key and value sequences are constructed in the cross-attention layer, with minimum modifications to the original models. Besides, we introduce a simple yet effective label augmentation method to provide richer supervision and improve data efficiency. Experiments show that our method can be readily applied to different detection transformers and improve their performance on both small-size and sample-rich datasets.

Label Augmentation

Main Results

The experimental results and model weights trained on Cityscapes are shown below.

Model mAP [email protected] [email protected] [email protected] [email protected] [email protected] Log & Model
CondDETR 12.5 29.6 9.1 2.2 10.5 27.5 Google Drive
DE-CondDETR 27.2 48.4 25.8 6.9 26.1 46.9 Google Drive
DELA-CondDETR 29.8 52.8 28.7 7.7 27.9 50.2 Google Drive

The experimental results and model weights trained on COCO 2017 are shown below.

Model mAP [email protected] [email protected] [email protected] [email protected] [email protected] Log & Model
CondDETR 40.2 61.1 42.6 19.9 43.6 58.7 Google Drive
DE-CondDETR 41.7 62.4 44.9 24.4 44.5 56.3 Google Drive
DELA-CondDETR 43.0 64.0 46.4 26.0 45.5 57.7 Google Drive

Note:

  1. All models are trained for 50 epochs.
  2. The performance of the model weights on Cityscapes is slightly different from that reported in the paper, because the results in the paper are the average of five repeated runs with different random seeds.

Installation

Requirements

  • Linux, CUDA>=9.2, GCC>=5.4

  • Python>=3.7

  • PyTorch>=1.7.0, torchvision>=0.6.0 (following instructions here)

  • Detectron2>=0.5 for RoIAlign (following instructions here)

  • Other requirements

    pip install -r requirements.txt

Usage

Dataset preparation

The COCO 2017 dataset can be downloaded from here and the Cityscapes datasets can be downloaded from here. The annotations in COCO format can be obtained from here. Afterward, please organize the datasets and annotations as following:

data
└─ cityscapes
   └─ leftImg8bit
      |─ train
      └─ val
└─ coco
   |─ annotations
   |─ train2017
   └─ val2017
└─ CocoFormatAnnos
   |─ cityscapes_train_cocostyle.json
   |─ cityscapes_val_cocostyle.json
   |─ instances_train2017_sample11828.json
   |─ instances_train2017_sample5914.json
   |─ instances_train2017_sample2365.json
   └─ instances_train2017_sample1182.json

The annotations for down-sampled COCO 2017 dataset is generated using utils/downsample_coco.py

Training

Training DELA-CondDETR on Cityscapes

python -m torch.distributed.launch --nproc_per_node=2 --master_port=29501 --use_env main.py --dataset_file cityscapes --coco_path data/cityscapes --batch_size 4 --model dela-cond-detr --repeat_label 2 --nms --wandb

Training DELA-CondDETR on down-sampled COCO 2017, with e.g. sample_rate=0.01

python -m torch.distributed.launch --nproc_per_node=2 --master_port=29501 --use_env main.py --dataset_file cocodown --coco_path data/coco --sample_rate 0.01 --batch_size 4 --model dela-cond-detr --repeat_label 2 --nms --wandb

Training DELA-CondDETR on COCO 2017

python -m torch.distributed.launch --nproc_per_node=8 --master_port=29501 --use_env main.py --dataset_file coco --coco_path data/coco --batch_size 4 --model dela-cond-detr --repeat_label 2 --nms --wandb

Training DE-CondDETR on Cityscapes

python -m torch.distributed.launch --nproc_per_node=2 --master_port=29501 --use_env main.py --dataset_file cityscapes --coco_path data/cityscapes --batch_size 4 --model de-cond-detr --wandb

Training CondDETR baseline

Please refer to the cond_detr branch.

Evaluation

You can get the pretrained model (the link is in "Main Results" session), then run following command to evaluate it on the validation set:

<training command> --resume <path to pre-trained model> --eval

Acknowledgement

This project is based on DETR, Conditional DETR, and Deformable DETR. Thanks for their wonderful works. See LICENSE for more details.

Citing DE-DETRs

If you find DE-DETRs useful in your research, please consider citing:

@misc{wang2022towards,
      title={Towards Data-Efficient Detection Transformers}, 
      author={Wen Wang and Jing Zhang and Yang Cao and Yongliang Shen and Dacheng Tao},
      year={2022},
      eprint={2203.09507},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Wen Wang
Wen Wang
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
'Solving the sampling problem of the Sycamore quantum supremacy circuits

solve_sycamore This repo contains data, contraction code, and contraction order for the paper ''Solving the sampling problem of the Sycamore quantum s

Feng Pan 29 Nov 28, 2022
Certified Patch Robustness via Smoothed Vision Transformers

Certified Patch Robustness via Smoothed Vision Transformers This repository contains the code for replicating the results of our paper: Certified Patc

Madry Lab 35 Dec 14, 2022
Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

GUI for iVOS(interactive VOS) and GIS (Guided iVOS) GUI Implementation of CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliabili

Yuk Heo 13 Dec 09, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
Namish Khanna 40 Oct 11, 2022
End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021)

PDVC Official implementation for End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021) [paper] [valse论文速递(Chinese)] This repo supports:

Teng Wang 118 Dec 16, 2022
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting

[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting [Paper] [Project Website] [Google Colab] We propose a method for converting a

Virginia Tech Vision and Learning Lab 6.2k Jan 01, 2023
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
Python Environment for Bayesian Learning

Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in

Abhik Shah 103 Jul 14, 2022
Learning Skeletal Articulations with Neural Blend Shapes

This repository provides an end-to-end library for automatic character rigging and blend shapes generation as well as a visualization tool. It is based on our work Learning Skeletal Articulations wit

Peizhuo 504 Dec 30, 2022
Explore extreme compression for pre-trained language models

Code for paper "Exploring extreme parameter compression for pre-trained language models ICLR2022"

twinkle 16 Nov 14, 2022
本步态识别系统主要基于GaitSet模型进行实现

本步态识别系统主要基于GaitSet模型进行实现。在尝试部署本系统之前,建立理解GaitSet模型的网络结构、训练和推理方法。 系统的实现效果如视频所示: 演示视频 由于模型较大,部分模型文件存储在百度云盘。 链接提取码:33mb 具体部署过程 1.下载代码 2.安装requirements.txt

16 Oct 22, 2022
This repo is to present various code demos on how to use our Graph4NLP library.

Deep Learning on Graphs for Natural Language Processing Demo The repository contains code examples for DLG4NLP tutorials at NAACL 2021, SIGIR 2021, KD

Graph4AI 143 Dec 23, 2022
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
Unsupervised Feature Ranking via Attribute Networks.

FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features

7 Sep 29, 2022