[NeurIPS'21] Projected GANs Converge Faster

Overview

[Project] [PDF] [Supplementary] [Talk]

This repository contains the code for our NeurIPS 2021 paper "Projected GANs Converge Faster"

by Axel Sauer, Kashyap Chitta, Jens Müller, and Andreas Geiger.

If you find our code or paper useful, please cite

@InProceedings{Sauer2021NEURIPS,
  author         = {Axel Sauer and Kashyap Chitta and Jens M{\"{u}}ller and Andreas Geiger},
  title          = {Projected GANs Converge Faster},
  booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
  year           = {2021},
}

ToDos

  • Initial code release
  • Providing pretrained models
  • Easy-to-use colab
  • StyleGAN3 support

Requirements

  • 64-bit Python 3.8 and PyTorch 1.9.0 (or later). See https://pytorch.org for PyTorch install instructions.
  • Use the following commands with Miniconda3 to create and activate your PG Python environment:
    • conda env create -f environment.yml
    • conda activate pg
  • The StyleGAN2 generator relies on custom CUDA kernels, which are compiled on the fly. Hence you need:
    • CUDA toolkit 11.1 or later.
    • GCC 7 or later compilers. Recommended GCC version depends on CUDA version, see for example CUDA 11.4 system requirements.
    • If you run into problems when setting up for the custom CUDA kernels, we refer to the Troubleshooting docs of the original StyleGAN repo. When using the FastGAN generator you will not need the custom kernels.

Data Preparation

For a quick start, you can download the few-shot datasets provided by the authors of FastGAN. You can download them here. To prepare the dataset at the respective resolution, run for example

python dataset_tool.py --source=./data/pokemon --dest=./data/pokemon256.zip \
  --resolution=256x256 --transform=center-crop

You can get the datasets we used in our paper at their respective websites:

CLEVR, FFHQ, Cityscapes, LSUN, AFHQ, Landscape.

Training

Training your own PG on LSUN church using 8 GPUs:

python train.py --outdir=./training-runs/ --cfg=fastgan --data=./data/pokemon256.zip \
  --gpus=8 --batch=64 --mirror=1 --snap=50 --batch-gpu=8 --kimg=10000

--batch specifies the overall batch size, --batch-gpu specifies the batch size per GPU. If you use fewer GPUs, the training loop will automatically accumulate gradients, until the overall batch size is reached.

If you want to use the StyleGAN2 generator, use --cfg=stylegan2. Samples and metrics are saved in outdir. To monitor the training progress, you can inspect fid50k_full.json or run tensorboard in training-runs.

Generating Samples & Interpolations

To generate samples and interpolation videos, run

python gen_images.py --outdir=out --trunc=1.0 --seeds=10-15 \
  --network=PATH_TO_NETWORK_PKL

and

python gen_video.py --output=lerp.mp4 --trunc=1.0 --seeds=0-31 --grid=4x2 \
  --network=PATH_TO_NETWORK_PKL

Quality Metrics

Per default, train.py tracks FID50k during training. To calculate metrics for a specific network snapshot, run

python calc_metrics.py --metrics=fid50k_full --network=PATH_TO_NETWORK_PKL

To see the available metrics, run

python calc_metrics.py --help

Using PG in your own project

Our implementation is modular, so it is straightforward to use PG in your own codebase. Simply copy the pg_modules folder to your project. Then, to get the projected multi-scale discriminator, run

from pg_modules.discriminator import ProjectedDiscriminator
D = ProjectedDiscriminator()

The only thing you still need to do is to make sure that the feature network is not trained, i.e., explicitly set

D.feature_network.requires_grad_(False)

in your training loop.

Acknowledgments

Our codebase build and extends the awesome StyleGAN2-ADA repo and StyleGAN3 repo, both by Karras et al.

Furthermore, we use parts of the code of FastGAN and MiDas.

Malware Bypass Research using Reinforcement Learning

Malware Bypass Research using Reinforcement Learning

Bobby Filar 76 Dec 26, 2022
This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation)

This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation) Usage example python dynamic_inverted_softmax.py --sims_train

36 Dec 29, 2022
Codes for the compilation and visualization examples to the HIF vegetation dataset

High-impedance vegetation fault dataset This repository contains the codes that compile the "Vegetation Conduction Ignition Test Report" data, which a

1 Dec 12, 2021
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised de

Hang 94 Dec 25, 2022
FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection

FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection This repository contains an implementation of FCAF3D, a 3D object detection method introdu

SamsungLabs 153 Dec 29, 2022
Fedlearn支持前沿算法研发的Python工具库 | Fedlearn algorithm toolkit for researchers

FedLearn-algo Installation Development Environment Checklist python3 (3.6 or 3.7) is required. To configure and check the development environment is c

89 Nov 14, 2022
A repo with study material, exercises, examples, etc for Devnet SPAUTO

MPLS in the SDN Era -- DevNet SPAUTO Get right to the study material: Checkout the Wiki! A lab topology based on MPLS in the SDN era book used for 30

Hugo Tinoco 67 Nov 16, 2022
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

158 Dec 15, 2022
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

Abel Siqueira 8 Jun 07, 2022
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022
JFB: Jacobian-Free Backpropagation for Implicit Models

JFB: Jacobian-Free Backpropagation for Implicit Models

Typal Research 28 Dec 11, 2022
CvT-ASSD: Convolutional vision-Transformerbased Attentive Single Shot MultiBox Detector (ICTAI 2021 CCF-C 会议)The 33rd IEEE International Conference on Tools with Artificial Intelligence

CvT-ASSD including extra CvT, CvT-SSD, VGG-ASSD models original-code-website: https://github.com/albert-jin/CvT-SSD new-code-website: https://github.c

金伟强 -上海大学人工智能小渣渣~ 5 Mar 07, 2022
Codebase of deep learning models for inferring stability of mRNA molecules

Kaggle OpenVaccine Models Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challen

Eternagame 40 Dec 29, 2022
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

OpenDR 10 Jun 17, 2022
Code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition This repository contains code for the CVPR2021 paper "Patch-NetV

QVPR 368 Jan 06, 2023
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
Several simple examples for popular neural network toolkits calling custom CUDA operators.

Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide

WeiYang 798 Jan 01, 2023
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
DeepCAD: A Deep Generative Network for Computer-Aided Design Models

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Rundi Wu 85 Dec 31, 2022