Malware Bypass Research using Reinforcement Learning

Overview

MalwareRL

Malware Bypass Research using Reinforcement Learning

Background

This is a malware manipulation environment using OpenAI's gym environments. The core idea is based on paper "Learning to Evade Static PE Machine Learning Malware Models via Reinforcement Learning" (paper). I am extending the original repo because:

  1. It is no longer maintained
  2. It uses Python2 and an outdated version of LIEF
  3. I wanted to integrate new Malware gym environments and additional manipulations

Over the past three years there have been breakthrough open-source projects published in the security ML space. In particular, Ember (Endgame Malware BEnchmark for Research) (paper) and MalConv: Malware detection by eating a whole exe (paper) have provided security researchers the ability to develop sophisticated, reproducible models that emulate features/techniques found in NGAVs.

MalwareRL Gym Environment

MalwareRL exposes gym environments for both Ember and MalConv to allow researchers to develop Reinforcement Learning agents to bypass Malware Classifiers. Actions include a variety of non-breaking (e.g. binaries will still execute) modifications to the PE header, sections, imports and overlay and are listed below.

Action Space

ACTION_TABLE = {
    'modify_machine_type': 'modify_machine_type',
    'pad_overlay': 'pad_overlay',
    'append_benign_data_overlay': 'append_benign_data_overlay',
    'append_benign_binary_overlay': 'append_benign_binary_overlay',
    'add_bytes_to_section_cave': 'add_bytes_to_section_cave',
    'add_section_strings': 'add_section_strings',
    'add_section_benign_data': 'add_section_benign_data',
    'add_strings_to_overlay': 'add_strings_to_overlay',
    'add_imports': 'add_imports',
    'rename_section': 'rename_section',
    'remove_debug': 'remove_debug',
    'modify_optional_header': 'modify_optional_header',
    'modify_timestamp': 'modify_timestamp',
    'break_optional_header_checksum': 'break_optional_header_checksum',
    'upx_unpack': 'upx_unpack',
    'upx_pack': 'upx_pack'
}

Observation Space

The observation_space of the gym environments are an array representing the feature vector. For ember this is numpy.array == 2381 and malconv numpy.array == 1024**2. The MalConv gym presents an opportunity to try RL techniques to generalize learning across large State Spaces.

Agents

A baseline agent RandomAgent is provided to demonstrate how to interact w/ gym environments and expected output. This agent attempts to evade the classifier by randomly selecting an action. This process is repeated up to the length of a game (e.g. 50 mods). If the modifed binary scores below the classifier threshold we register it as an evasion. In a lot of ways the RandomAgent acts as a fuzzer trying a bunch of actions with no regard to minimizing the modifications of the resulting binary.

Additional agents will be developed and made available (both model and code) in the coming weeks.

Table 1: Evasion Rate against Ember Holdout Dataset*

gym agent evasion_rate avg_ep_len
ember RandomAgent 89.2% 8.2
malconv RandomAgent 88.5% 16.33


* 250 random samples

Setup

To get malware_rl up and running you will need the follow external dependencies:

  • LIEF
  • Ember, Malconv and SOREL-20M models. All of these then need to be placed into the malware_rl/envs/utils/ directory.

    The SOREL-20M model requires use of the aws-cli in order to get. When accessing the AWS S3 bucket, look in the sorel-20m-model/checkpoints/lightGBM folder and fish out any of the models in the seed folders. The model file will need to be renamed to sorel.model and placed into malware_rl/envs/utils alongside the other models.

  • UPX has been added to support pack/unpack modifications. Download the binary here and place in the malware_rl/envs/controls directory.
  • Benign binaries - a small set of "trusted" binaries (e.g. grabbed from base Windows installation) you can download some via MSFT website (example). Store these binaries in malware_rl/envs/controls/trusted
  • Run strings command on those binaries and save the output as .txt files in malware_rl/envs/controls/good_strings
  • Download a set of malware from VirusShare or VirusTotal. I just used a list of hashes from the Ember dataset

Note: The helper script download_deps.py can be used as a quickstart to get most of the key dependencies setup.

I used a conda env set for Python3.7:

conda create -n malware_rl python=3.7

Finally install the Python3 dependencies in the requirements.txt.

pip3 install -r requirements.txt

References

The are a bunch of good papers/blog posts on manipulating binaries to evade ML classifiers. I compiled a few that inspired portions of this project below. Also, I have inevitably left out other pertinent reseach, so if there is something that should be in here let me know in an Git Issue or hit me up on Twitter (@filar).

Papers

  • Demetrio, Luca, et al. "Efficient Black-box Optimization of Adversarial Windows Malware with Constrained Manipulations." arXiv preprint arXiv:2003.13526 (2020). (paper)
  • Demetrio, Luca, et al. "Adversarial EXEmples: A Survey and Experimental Evaluation of Practical Attacks on Machine Learning for Windows Malware Detection." arXiv preprint arXiv:2008.07125 (2020). (paper)
  • Song, Wei, et al. "Automatic Generation of Adversarial Examples for Interpreting Malware Classifiers." arXiv preprint arXiv:2003.03100 (2020). (paper)
  • Suciu, Octavian, Scott E. Coull, and Jeffrey Johns. "Exploring adversarial examples in malware detection." 2019 IEEE Security and Privacy Workshops (SPW). IEEE, 2019. (paper)
  • Fleshman, William, et al. "Static malware detection & subterfuge: Quantifying the robustness of machine learning and current anti-virus." 2018 13th International Conference on Malicious and Unwanted Software (MALWARE). IEEE, 2018. (paper)
  • Pierazzi, Fabio, et al. "Intriguing properties of adversarial ML attacks in the problem space." 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020. (paper/code)
  • Fang, Zhiyang, et al. "Evading anti-malware engines with deep reinforcement learning." IEEE Access 7 (2019): 48867-48879. (paper)

Blog Posts

Talks

  • 42: The answer to life the universe and everything offensive security by Will Pearce, Nick Landers (slides)
  • Bot vs. Bot: Evading Machine Learning Malware Detection by Hyrum Anderson (slides)
  • Trying to Make Meterpreter into an Adversarial Example by Andy Applebaum (slides)
Owner
Bobby Filar
Security Data Science @ Elastic
Bobby Filar
The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022

DG-TrajGen The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022. Our Meth

Wang 25 Sep 26, 2022
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations

DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations This repository contains the data, scripts and baseline co

Alexa 51 Dec 17, 2022
Complete system for facial identity system

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

4 May 02, 2022
Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)"

BAM and CBAM Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)" Updat

Jongchan Park 1.7k Jan 01, 2023
ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator

ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences an

Microsoft 8k Jan 04, 2023
Modeling CNN layers activity with Gaussian mixture model

GMM-CNN This code package implements the modeling of CNN layers activity with Gaussian mixture model and Inference Graphs visualization technique from

3 Aug 05, 2022
Deep Inside Convolutional Networks - This is a caffe implementation to visualize the learnt model

Deep Inside Convolutional Networks This is a caffe implementation to visualize the learnt model. Part of a class project at Georgia Tech Problem State

Jigar 61 Apr 15, 2022
PyTorch implementation of paper: AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer, ICCV 2021.

AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer [Paper] [PyTorch Implementation] [Paddle Implementation] Overview This reposit

148 Dec 30, 2022
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

4 Nov 25, 2022
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Eugenio Herrera 175 Dec 29, 2022
This repository lets you interact with Lean through a REPL.

lean-gym This repository lets you interact with Lean through a REPL. See Formal Mathematics Statement Curriculum Learning for a presentation of lean-g

OpenAI 87 Dec 28, 2022
[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments? [Paper] [ICML'21 Project] PyTorch Implementation T

24 Oct 26, 2022
Random Walk Graph Neural Networks

Random Walk Graph Neural Networks This repository is the official implementation of Random Walk Graph Neural Networks. Requirements Code is written in

Giannis Nikolentzos 38 Jan 02, 2023
PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English

PASTRIE Official release of the corpus described in the paper: Michael Kranzlein, Emma Manning, Siyao Peng, Shira Wein, Aryaman Arora, and Nathan Schn

NERT @ Georgetown 4 Dec 02, 2021
[ECCV2020] Content-Consistent Matching for Domain Adaptive Semantic Segmentation

[ECCV20] Content-Consistent Matching for Domain Adaptive Semantic Segmentation This is a PyTorch implementation of CCM. News: GTA-4K list is available

Guangrui Li 88 Aug 25, 2022
Image-generation-baseline - MUGE Text To Image Generation Baseline

MUGE Text To Image Generation Baseline Requirements and Installation More detail

23 Oct 17, 2022
Attention-guided gan for synthesizing IR images

SI-AGAN Attention-guided gan for synthesizing IR images This repository contains the Tensorflow code for "Pedestrian Gender Recognition by Style Trans

1 Oct 25, 2021
DeepAL: Deep Active Learning in Python

DeepAL: Deep Active Learning in Python Python implementations of the following active learning algorithms: Random Sampling Least Confidence [1] Margin

Kuan-Hao Huang 583 Jan 03, 2023
Framework web SnakeServer.

SnakeServer - Framework Web 🐍 Documentação oficial do framework SnakeServer. Conteúdo Sobre Como contribuir Enviar relatórios de segurança Pull reque

Jaedson Silva 0 Jul 21, 2022