This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation)

Related tags

Deep Learningqb-norm
Overview

This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation)

Usage example

python dynamic_inverted_softmax.py --sims_train_test_path msrvtt/tt-ce-train-captions-test-videos-seed0.pkl --sims_test_path msrvtt/tt-ce-test-captions-test-videos-seed0.pkl --test_query_masks_path msrvtt/tt-ce-test-query_masks.pkl

To test QB-Norm on your own data you need to:

  1. Extract the similarity matrix between the caption from the training split and the videos from the testing split path/to/sims/train/test
  2. Extract testing split similarity matrix (similarities between testing captions and testing video) path/to/sims/test
  3. Run QB-Norm
python dynamic_inverted_softmax.py --sims_train_test_path path/to/sims/train/test --sims_test_path path/to/sims/test

Data

The similarity matrices for each method were extracted using the official repositories as follows: CE+, TT-CE+, CLIP2Video, CLIP4Clip (for CLIP4Clip we used the official repo to train from scratch new models since they do not provide pre-trained weights), CLIP, MMT, Audio-Retrieval.

You can download the extracted similarity matrices for training and testing here: MSRVTT, MSVD, DiDeMo, LSMDC.

Text-Video retrieval results

QB-Norm Results on MSRVTT Benchmark

Model Split Task [email protected] [email protected] [email protected] MdR Geom
CE+ Full t2v 14.4(0.1) 37.4(0.1) 50.2(0.1) 10.0(0.0) 30.0(0.1)
CE+ (+QB-Norm) Full t2v 16.4(0.0) 40.3(0.1) 52.9(0.1) 9.0(0.0) 32.7(0.1)
TT-CE+ Full t2v 14.9(0.1) 38.3(0.1) 51.5(0.1) 10.0(0.0) 30.9(0.1)
TT-CE+ (+QB-Norm) Full t2v 17.3(0.0) 42.1(0.2) 54.9(0.1) 8.0(0.0) 34.2(0.1)

QB-Norm Results on MSVD Benchmark

Model Split Task [email protected] [email protected] [email protected] MdR Geom
TT-CE+ Full t2v 25.4(0.3) 56.9(0.4) 71.3(0.2) 4.0(0.0) 46.9(0.3)
TT-CE+ (+QB-Norm) Full t2v 26.6(1.0) 58.6(1.3) 71.8(1.1) 4.0(0.0) 48.2(1.2)
CLIP2Video Full t2v 47.0 76.8 85.9 2.0 67.7
CLIP2Video (+QB-Norm) Full t2v 48.0 77.9 86.2 2.0 68.5

QB-Norm Results on DiDeMo Benchmark

Model Split Task [email protected] [email protected] [email protected] MdR Geom
TT-CE+ Full t2v 21.6(0.7) 48.6(0.4) 62.9(0.6) 6.0(0.0) 40.4(0.4)
TT-CE+ (+QB-Norm) Full t2v 24.2(0.7) 50.8(0.7) 64.4(0.1) 5.3(0.5) 43.0(0.2)
CLIP4Clip Full t2v 43.0 70.5 80.0 2.0 62.4
CLIP4Clip (+QB-Norm) Full t2v 43.5 71.4 80.9 2.0 63.1

QB-Norm Results on LSMDC Benchmark

Model Split Task [email protected] [email protected] [email protected] MdR Geom
TT-CE+ Full t2v 17.2(0.4) 36.5(0.6) 46.3(0.3) 13.7(0.5) 30.7(0.3)
TT-CE+ (+QB-Norm) Full t2v 17.8(0.4) 37.7(0.5) 47.6(0.6) 12.7(0.5) 31.7(0.3)
CLIP4Clip Full t2v 21.3 40.0 49.5 11.0 34.8
CLIP4Clip (+QB-Norm) Full t2v 22.4 40.1 49.5 11.0 35.4

QB-Norm Results on VaTeX Benchmark

Model Split Task [email protected] [email protected] [email protected] MdR Geom
TT-CE+ Full t2v 53.2(0.2) 87.4(0.1) 93.3(0.0) 1.0(0.0) 75.7(0.1)
TT-CE+ (+QB-Norm) Full t2v 54.8(0.1) 88.2(0.1) 93.8(0.1) 1.0(0.0) 76.8(0.0)
CLIP2Video Full t2v 57.4 87.9 93.6 1.0 77.9
CLIP2Video (+QB-Norm) Full t2v 58.8 88.3 93.8 1.0 78.7

QB-Norm Results on QuerYD Benchmark

Model Split Task [email protected] [email protected] [email protected] MdR Geom
CE+ Full t2v 13.2(2.0) 37.1(2.9) 50.5(1.9) 10.3(1.2) 29.1(2.2)
CE+ (+QB-Norm) Full t2v 14.1(1.8) 38.6(1.3) 51.1(1.6) 10.0(0.8) 30.2(1.7)
TT-CE+ Full t2v 14.4(0.5) 37.7(1.7) 50.9(1.6) 9.8(1.0) 30.3(0.9)
TT-CE+ (+QB-Norm) Full t2v 15.1(1.6) 38.3(2.4) 51.2(2.8) 10.3(1.7) 30.9(2.3)

Text-Image retrieval results

QB-Norm Results on MSCoCo Benchmark

Model Split Task [email protected] [email protected] [email protected] MdR Geom
CLIP 5k t2i 30.3 56.1 67.1 4.0 48.5
CLIP (+QB-Norm) 5k t2i 34.8 59.9 70.4 3.0 52.8
MMT-Oscar 5k t2i 52.2 80.2 88.0 1.0 71.7
MMT-Oscar (+QB-Norm) 5k t2i 53.9 80.5 88.1 1.0 72.6

Text-Audio retrieval results

QB-Norm Results on AudioCaps Benchmark

Model Split Task [email protected] [email protected] [email protected] MdR Geom
AR-CE Full t2a 23.1(0.6) 55.1(0.7) 70.7(0.6) 4.7(0.5) 44.8(0.7)
AR-CE (+QB-Norm) Full t2a 23.9(0.2) 57.1(0.3) 71.6(0.4) 4.0(0.0) 46.0(0.3)

References

If you find this code useful or use the extracted similarity matrices, please consider citing:

@misc{bogolin2021cross,
      title={Cross Modal Retrieval with Querybank Normalisation}, 
      author={Simion-Vlad Bogolin and Ioana Croitoru and Hailin Jin and Yang Liu and Samuel Albanie},
      year={2021},
      eprint={2112.12777},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
This application explain how we can easily integrate Deepface framework with Python Django application

deepface_suite This application explain how we can easily integrate Deepface framework with Python Django application install redis cache install requ

Mohamed Naji Aboo 3 Apr 18, 2022
TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
A curated list of awesome deep long-tailed learning resources.

A curated list of awesome deep long-tailed learning resources.

vanint 210 Dec 25, 2022
Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

RawVSR This repo contains the official codes for our paper: Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference Xiaoh

Xiaohong Liu 23 Oct 08, 2022
Repository for the paper "Exploring the Sensory Spaces of English Perceptual Verbs in Natural Language Data"

Sensory Spaces of English Perceptual Verbs This repository contains the code and collocational data described in the paper "Exploring the Sensory Spac

David Peng 0 Sep 07, 2021
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023
Disagreement-Regularized Imitation Learning

Due to a normalization bug the expert trajectories have lower performance than the rl_baseline_zoo reported experts. Please see the following link in

Kianté Brantley 25 Apr 28, 2022
Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing

Clova AI Research 56 Jan 02, 2023
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
Implementation of FSGNN

FSGNN Implementation of FSGNN. For more details, please refer to our paper Experiments were conducted with following setup: Pytorch: 1.6.0 Python: 3.8

19 Dec 05, 2022
Efficient Sparse Attacks on Videos using Reinforcement Learning

EARL This repository provides a simple implementation of the work "Efficient Sparse Attacks on Videos using Reinforcement Learning" Example: Demo: Her

12 Dec 05, 2021
Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer)

Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer) Introduction By applying the

Son Gyo Jung 1 Jul 09, 2022
ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator

ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences an

Microsoft 8k Jan 04, 2023
Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices, ACM Multimedia 2021

Codes for ECBSR Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices Xindong Zhang, Hui Zeng, Lei Zhang ACM Multimedia 202

xindong zhang 236 Dec 26, 2022
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
A minimalist tool to display a network graph.

A tool to get a minimalist view of any architecture This tool has only be tested with the models included in this repo. Therefore, I can't guarantee t

Thibault Castells 1 Feb 11, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Tensorflow port of a full NetVLAD network

netvlad_tf The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide

Robotics and Perception Group 225 Nov 08, 2022