Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Overview

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance

[Video Demo] [Paper]

Installation

Requirements

  • Python 3.6
  • PyTorch 1.1.0

Please clone this repository and run the following command:

pip install -r requirements.txt

Then, download some checkpoints and human body models, and place them in the human_motion_prior/models.

Specifically,

  • Download the pretrained VPoser v1.0 model (2.5 MB) here.
  • Download the SMPLH model here.
  • Download the SMPL model here for MALE and FEMALE and here for NEUTRAL.
  • Download the regressor weights files 1) J_regressor_h36m.npy and 2) J_regressor_extra.npy here.

The models tree is like:

human_motion_prior/models
├── smpl
│   ├── SMPL_FEMALE.pkl
│   └── SMPL_MALE.pkl
│   └── SMPL_NEUTRAL.pkl
│   └── J_regressor_h36m.npy
│   └── J_regressor_extra.npy
├── smplh
│   ├── SMPLH_FEMALE_AMASS.npz
│   └── SMPLH_MALE_AMASS.npz
|   └── SMPLH_MEUTRAL_AMASS.npz
├── pre_trained
    └── vposer_v1_0

Data Pre-process

Follow the instruction here.

Training

cd human_motion_prior/train
sh run_script.sh 4

We train our human motion prior on 4 GTX 1080Ti gpus with batch size 15 per gpu.

You can modify the human_motion_prior/train/motion_prior_defaults.ini for different training setting.

Inference

You can use the motion prior trained on AMASS to evaluate the VAE reconstruction loss on unseen 3DPW dataset as follows:

cd human_motion_prior/test
export PYTHONPATH=../../
python test_3dpw.py

Citation

@inproceedings{human_motion_prior,
  title = {Exploring Versatile Prior for Human Motion via Motion Frequency Guidance},
  author = {Jiachen Xu, Min Wang, Jingyu Gong, Wentao Liu, Chen Qian, Yuan Xie, Lizhuang Ma},
  booktitle = {2021 international conference on 3D vision (3DV)},
  year = {2021}
}

Acknowledgments

We thank the authors of VPoser for their released code.

Owner
Jiachen Xu
Jiachen Xu
Fully convolutional networks for semantic segmentation

FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo

Kai Arulkumaran 186 Dec 25, 2022
Learning to Prompt for Vision-Language Models.

CoOp Paper: Learning to Prompt for Vision-Language Models Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu CoOp (Context Optimization)

Kaiyang 679 Jan 04, 2023
Pytorch implementation of "ARM: Any-Time Super-Resolution Method"

ARM-Net Dependencies Python 3.6 Pytorch 1.7 Results Train Data preprocessing cd data_scripts python extract_subimages_test.py python data_augmentation

Bohong Chen 55 Nov 24, 2022
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

4 Mar 11, 2022
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose Paper | Website | Data A-NeRF: Articulated Neural Radiance F

Shih-Yang Su 172 Dec 22, 2022
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
Memory-Augmented Model Predictive Control

Memory-Augmented Model Predictive Control This repository hosts the source code for the journal article "Composing MPC with LQR and Neural Networks fo

Fangyu Wu 1 Jun 19, 2022
Python Multi-Agent Reinforcement Learning framework

- Please pay attention to the version of SC2 you are using for your experiments. - Performance is *not* always comparable between versions. - The re

whirl 1.3k Jan 05, 2023
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
Implementation of the paper "Shapley Explanation Networks"

Shapley Explanation Networks Implementation of the paper "Shapley Explanation Networks" at ICLR 2021. Note that this repo heavily uses the experimenta

68 Dec 27, 2022
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks Image Classification Dataset: Google Landmark, COCO, ImageNet Model: Efficient

FedML-AI 62 Dec 10, 2022
Official implementation of EfficientPose

EfficientPose This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet

2 May 17, 2022
Official Implementation of DE-CondDETR and DELA-CondDETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-CondDETR and DELA-Cond

Wen Wang 41 Dec 12, 2022
Air Pollution Prediction System using Linear Regression and ANN

AirPollution Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living Publication Link:

Dr Sharnil Pandya, Associate Professor, Symbiosis International University 19 Feb 07, 2022