Export CenterPoint PonintPillars ONNX Model For TensorRT

Overview

CenterPoint-PonintPillars Pytroch model convert to ONNX and TensorRT

Welcome to CenterPoint! This project is fork from tianweiy/CenterPoint. I implement some code to export CenterPoint-PonintPillars ONNX model and deploy the onnx model using TensorRT.

Center-based 3D Object Detection and Tracking

3D Object Detection and Tracking using center points in the bird-eye view.

Center-based 3D Object Detection and Tracking,
Tianwei Yin, Xingyi Zhou, Philipp Krähenbühl,
arXiv technical report (arXiv 2006.11275)

@article{yin2020center,
  title={Center-based 3D Object Detection and Tracking},
  author={Yin, Tianwei and Zhou, Xingyi and Kr{\"a}henb{\"u}hl, Philipp},
  journal={arXiv:2006.11275},
  year={2020},
}

NEWS

[2021-01-06] CenterPoint v1.0 is released. Without bells and whistles, we rank first among all Lidar-only methods on Waymo Open Dataset with a single model that runs at 11 FPS. Check out CenterPoint's model zoo for Waymo and nuScenes.

[2020-12-11] 3 out of the top 4 entries in the recent NeurIPS 2020 nuScenes 3D Detection challenge used CenterPoint. Congratualations to other participants and please stay tuned for more updates on nuScenes and Waymo soon.

Contact

Any questions or suggestions are welcome!

Tianwei Yin [email protected] Xingyi Zhou [email protected]

Abstract

Three-dimensional objects are commonly represented as 3D boxes in a point-cloud. This representation mimics the well-studied image-based 2D bounding-box detection but comes with additional challenges. Objects in a 3D world do not follow any particular orientation, and box-based detectors have difficulties enumerating all orientations or fitting an axis-aligned bounding box to rotated objects. In this paper, we instead propose to represent, detect, and track 3D objects as points. Our framework, CenterPoint, first detects centers of objects using a keypoint detector and regresses to other attributes, including 3D size, 3D orientation, and velocity. In a second stage, it refines these estimates using additional point features on the object. In CenterPoint, 3D object tracking simplifies to greedy closest-point matching. The resulting detection and tracking algorithm is simple, efficient, and effective. CenterPoint achieved state-of-the-art performance on the nuScenes benchmark for both 3D detection and tracking, with 65.5 NDS and 63.8 AMOTA for a single model. On the Waymo Open Dataset, CenterPoint outperforms all previous single model method by a large margin and ranks first among all Lidar-only submissions.

Highlights

  • Simple: Two sentences method summary: We use standard 3D point cloud encoder with a few convolutional layers in the head to produce a bird-eye-view heatmap and other dense regression outputs including the offset to centers in the previous frame. Detection is a simple local peak extraction with refinement, and tracking is a closest-distance matching.

  • Fast and Accurate: Our best single model achieves 71.9 mAPH on Waymo and 65.5 NDS on nuScenes while running at 11FPS+.

  • Extensible: Simple replacement for anchor-based detector in your novel algorithms.

Main results

3D detection on Waymo test set

#Frame Veh_L2 Ped_L2 Cyc_L2 MAPH FPS
VoxelNet 1 71.9 67.0 68.2 69.0 13
VoxelNet 2 73.0 71.5 71.3 71.9 11

3D detection on Waymo domain adaptation test set

#Frame Veh_L2 Ped_L2 Cyc_L2 MAPH FPS
VoxelNet 2 56.1 47.8 65.2 56.3 11

3D detection on nuScenes test set

MAP ↑ NDS ↑ PKL ↓ FPS ↑
VoxelNet 58.0 65.5 0.69 11

3D tracking on Waymo test set

#Frame Veh_L2 Ped_L2 Cyc_L2 MOTA FPS
VoxelNet 2 59.4 56.6 60.0 58.7 11

3D Tracking on nuScenes test set

AMOTA ↑ AMOTP ↓
VoxelNet (flip test) 63.8 0.555

All results are tested on a Titan RTX GPU with batch size 1.

Third-party resources

  • AFDet: another work inspired by CenterPoint achieves good performance on KITTI/Waymo dataset.
  • mmdetection3d: CenterPoint in mmdet framework.

Use CenterPoint

Installation

Please refer to INSTALL to set up libraries needed for distributed training and sparse convolution.

First download the model (By default, centerpoint_pillar_512) and put it in work_dirs/centerpoint_pillar_512_demo.

We provide a driving sequence clip from the nuScenes dataset. Donwload the folder and put in the main directory.
Then run a demo by python tools/demo.py. If setup corectly, you will see an output video like (red is gt objects, blue is the prediction):

Benchmark Evaluation and Training

Please refer to GETTING_START to prepare the data. Then follow the instruction there to reproduce our detection and tracking results. All detection configurations are included in configs and we provide the scripts for all tracking experiments in tracking_scripts.

Export ONNX

I divide Pointpillars model into two parts, pfe(include PillarFeatureNet) and rpn(include RPN and CenterHead). The PointPillarsScatter isn't exported. I use ScatterND node instead of PointPillarsScatter.

  • Install packages

    pip install onnx onnx-simplifier onnxruntime
  • step 1. Download the trained model(latest.pth) and nuscenes mini dataset(v1.0-mini.tar)

  • step 2 Prepare dataset. Please refer to docs/NUSC.md

  • step 3. Export pfe.onnx and rpn.onnx

    python tool/export_pointpillars_onnx.py
  • step 4. Use onnx-simplify and scripte to simplify pfe.onnx and rpn.onnx.

    python tool/simplify_model.py
  • step 5. Merge pfe.onnx and rpn.onnx. We use ScatterND node to connect pfe and rpn. TensorRT doesn't support ScatterND operater. If you want to run CenterPoint-pointpillars by TensorRT, you can run pfe.onnx and rpn.onnx respectively.

    python tool/merge_pfe_rpn_model.py

    All onnx model are saved in onnx_model.

    I add an argument(export_onnx) for export onnx model in config file

    model = dict(
      type="PointPillars",
      pretrained=None,
      export_onnx=True, # for export onnx model
      reader=dict(
          type="PillarFeatureNet",
          num_filters=[64, 64],
          num_input_features=5,
          with_distance=False,
          voxel_size=(0.2, 0.2, 8),
          pc_range=(-51.2, -51.2, -5.0, 51.2, 51.2, 3.0),
          export_onnx=True, # for export onnx model
      ),
      backbone=dict(type="PointPillarsScatter", ds_factor=1),
      neck=dict(
          type="RPN",
          layer_nums=[3, 5, 5],
          ds_layer_strides=[2, 2, 2],
          ds_num_filters=[64, 128, 256],
          us_layer_strides=[0.5, 1, 2],
          us_num_filters=[128, 128, 128],
          num_input_features=64,
          logger=logging.getLogger("RPN"),
      ),

Centerpoint Pointpillars For TensorRT

see Readme

License

CenterPoint is release under MIT license (see LICENSE). It is developed based on a forked version of det3d. We also incorperate a large amount of code from CenterNet and CenterTrack. See the NOTICE for details. Note that both nuScenes and Waymo datasets are under non-commercial licenses.

Acknowlegement

This project is not possible without multiple great opensourced codebases. We list some notable examples below.

Owner
CarkusL
CarkusL
An open-source project for applying deep learning to medical scenarios

Auto Vaidya An open source solution for creating end-end web app for employing the power of deep learning in various clinical scenarios like implant d

Smaranjit Ghose 18 May 29, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Distributing reference energies for SMIRNOFF implementations

Warning: This code is currently experimental and under active development. Is it not yet suitable for distribution or use as reference implementation.

Open Force Field Initiative 1 Dec 07, 2021
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
POCO: Point Convolution for Surface Reconstruction

POCO: Point Convolution for Surface Reconstruction by: Alexandre Boulch and Renaud Marlet Abstract Implicit neural networks have been successfully use

valeo.ai 93 Dec 29, 2022
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks

GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C

GANs in Action 914 Dec 21, 2022
Various operations like path tracking, counting, etc by using yolov5

Object-tracing-with-YOLOv5 Various operations like path tracking, counting, etc by using yolov5

Pawan Valluri 5 Nov 28, 2022
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
Distributed Asynchronous Hyperparameter Optimization in Python

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

6.5k Jan 01, 2023
VGG16 model-based classification project about brain tumor detection.

Brain-Tumor-Classification-with-MRI VGG16 model-based classification project about brain tumor detection. First, you can check what people are doing o

Atakan Erdoğan 2 Mar 21, 2022
Hyperbolic Hierarchical Clustering.

Hyperbolic Hierarchical Clustering (HypHC) This code is the official PyTorch implementation of the NeurIPS 2020 paper: From Trees to Continuous Embedd

HazyResearch 154 Dec 15, 2022
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
Tech Resources for Academic Communities

Free tech resources for faculty, students, researchers, life-long learners, and academic community builders for use in tech based courses, workshops, and hackathons.

Microsoft 2.5k Jan 04, 2023
Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
Head and Neck Tumour Segmentation and Prediction of Patient Survival Project

Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival Welcome to the Head and Neck Tumour Segmentation and Prediction of Patient Surviv

5 Oct 20, 2022
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022