DTCN IJCAI - Sequential prediction learning framework and algorithm

Overview

DTCN

This is the implementation of our paper "Sequential Prediction of Social Media Popularity with Deep Temporal Context Networks".

Dataset

To successfully test performance, we created TPIC Dataset, a temporal popularity image collection dataset.

Overview

Our DTCN contains three main components, from embedding, learning to predicting. With a joint embedding network, we obtain a unified deep representation of multi-modal user-post data in a common embedding space. Then, based on the embedded data sequence over time, temporal context learning attempts to recurrently learn two adaptive temporal contexts for sequential popularity. Finally, a novel temporal attention is designed to predict new popularity (the popularity of a new user-post pair) with temporal coherence across multiple time-scales.

DTCN framework

Environment

The code is pure python. Keras is chosen to be the deep learning library here. Environment is configured by Anaconda. The environment file is saved as "environment.yml".

  • Ubuntu 16.04
  • Python 2.7
  • Cuda 10.0
  • cudnn 7.6.5

Setup

conda env create -f environment.yml

Prequisition

  • Clone the repository to your local machine
  • Acquire relevant dataset
  • Extract the image feature with ResNet (2048 dims)
  • Run script by seeing example.

Usage

DATA_HOME=test_data/TRIM_DATA
KERAS_BACKEND=theano \
THEANO_FLAGS='mode=FAST_RUN,device=cuda0,nvcc.fastmath=True,optimizer=fast_run' \
python main.py \
-feature_path $DATA_HOME/USER_20W_SORTED_BY_TIME.txt \
-meta_path $DATA_HOME/ResNet_20W_2048_SORTED_BY_TIME.txt \
-label_path $DATA_HOME/LABEL_20W_SORTED_BY_TIME.txt \
-algorithm SHARED_DTCN \
-nb_epoch 1000 \
-start_cross_validation 2 \
-total_cross_validation 3 \
-identifier_path $DATA_HOME/USERID_20W_SORTED_BY_TIME.txt \
-timestamps_path $DATA_HOME/TIMESTAMP_20W_SORTED_BY_TIME.txt \
-visual_mlp_enabled y \
-timestep 10 \
-time_align y \
-time_dis_con continue \
-time_context_length 18 \
-time_unit_metric hour \
-discrete_time_start_offset 2 \
-discrete_time_unit 4 \
-train_set_partial 9 \
-merge_mode concat \
-dual_time_align n \
-time_weight_mode time_flag \
-dual_lstm n

Citation

@inproceedings{Wu2017DTCN,
  title={Sequential Prediction of Social Media Popularity with Deep Temporal Context Networks},
  author={Wu, Bo and Cheng, Wen-Huang and Zhang, Yongdong and Qiushi, Huang and Jintao, Li and Mei, Tao},
  booktitle={IJCAI},
  year={2017},
  location = {Melbourne, Australia}}

Please concat us ([email protected]) if you have further questions or cooporations

Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques Installation PyPI pip install colossalai Install

HPC-AI Tech 7.1k Jan 03, 2023
The official GitHub repository for the Argoverse 2 dataset.

Argoverse 2 API Official GitHub repository for the Argoverse 2 family of datasets. If you have any questions or run into any problems with either the

Argo AI 156 Dec 23, 2022
Source code for our paper "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"

Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash Abstract: Apple recently revealed its deep perceptual hashing system NeuralHash to

<a href=[email protected]"> 11 Dec 03, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
A Player for Kanye West's Stem Player. Sort of an emulator.

Stem Player Player Stem Player Player Usage Download the latest release here Optional: install ffmpeg, instructions here NOTE: DOES NOT ENABLE DOWNLOA

119 Dec 28, 2022
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
This code implements constituency parse tree aggregation

README This code implements constituency parse tree aggregation. Folder details code: This folder contains the code that implements constituency parse

Adithya Kulkarni 0 Oct 11, 2021
OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework.

English | 简体中文 Documentation: https://mmtracking.readthedocs.io/ Introduction MMTracking is an open source video perception toolbox based on PyTorch.

OpenMMLab 2.7k Jan 08, 2023
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web br

Harsh Gupta 1 Nov 09, 2021
Robocop is your personal mini voice assistant made using Python.

Robocop-VoiceAssistant To use this project, you should have python installed in your system. If you don't have python installed, install it beforehand

Sohil Khanduja 3 Feb 26, 2022
PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

76 Dec 24, 2022
Segmentation-Aware Convolutional Networks Using Local Attention Masks

Segmentation-Aware Convolutional Networks Using Local Attention Masks [Project Page] [Paper] Segmentation-aware convolution filters are invariant to b

144 Jun 29, 2022
PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Shape-aware Convolutional Layer (ShapeConv) PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentatio

Hanchao Leng 82 Dec 29, 2022
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
Implementation for Panoptic-PolarNet (CVPR 2021)

Panoptic-PolarNet This is the official implementation of Panoptic-PolarNet. [ArXiv paper] Introduction Panoptic-PolarNet is a fast and robust LiDAR po

Zixiang Zhou 126 Jan 01, 2023
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023