VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

Related tags

Deep Learningvos
Overview

VOS

This is the source code accompanying the paper VOS: Learning What You Don’t Know by Virtual Outlier Synthesis by Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li

The codebase is heavily based on ProbDet and Detectron2.

Dataset Preparation

PASCAL VOC

Download the processed VOC 2007 and 2012 dataset from here.

The VOC dataset folder should have the following structure:

 └── VOC_DATASET_ROOT
     |
     ├── JPEGImages
     ├── voc0712_train_all.json
     └── val_coco_format.json

COCO

Download COCO2017 dataset from the official website.

Download the OOD dataset (json file) when the in-distribution dataset is Pascal VOC from here.

Download the OOD dataset (json file) when the in-distribution dataset is BDD-100k from here.

Put the two processed OOD json files to ./anntoations

The COCO dataset folder should have the following structure:

 └── COCO_DATASET_ROOT
     |
     ├── annotations
        ├── xxx (the original json files)
        ├── instances_val2017_ood_wrt_bdd_rm_overlap.json
        └── instances_val2017_ood_rm_overlap.json
     ├── train2017
     └── val2017

BDD-100k

Donwload the BDD-100k images from the official website.

Download the processed BDD-100k json files from here and here.

The BDD dataset folder should have the following structure:

 └── BDD_DATASET_ROOT
     |
     ├── images
     ├── val_bdd_converted.json
     └── train_bdd_converted.json

OpenImages

Download our OpenImages validation splits here. We created a tarball that contains the out-of-distribution data splits used in our paper for hyperparameter tuning. Do not modify or rename the internal folders as those paths are hard coded in the dataset reader. The OpenImages dataset is created in a similar way following this paper.

The OpenImages dataset folder should have the following structure:

 └── OEPNIMAGES_DATASET_ROOT
     |
     ├── coco_classes
     └── ood_classes_rm_overlap

Before training, modify the dataset address in the ./detection/core/datasets/setup_datasets.py according to your local dataset address.

Visualization of the OOD datasets

The OOD images with respect to different in-distribution datasets can be downloaded from ID-VOC-OOD-COCO, ID-VOC-OOD-openimages, ID-BDD-OOD-COCO, ID-BDD-OOD-openimages.

Training

Firstly, enter the detection folder by running

cd detection

Vanilla Faster-RCNN with VOC as the in-distribution dataset


python train_net.py
--num-gpus 8
--config-file VOC-Detection/faster-rcnn/vanilla.yaml 
--random-seed 0 
--resume

Vanilla Faster-RCNN with BDD as the in-distribution dataset

python train_net.py 
--num-gpus 8 
--config-file BDD-Detection/faster-rcnn/vanilla.yaml 
--random-seed 0 
--resume

VOS on ResNet

python train_net_gmm.py 
--num-gpus 8 
--config-file VOC-Detection/faster-rcnn/vos.yaml 
--random-seed 0 
--resume

VOS on RegNet

Before training using the RegNet as the backbone, download the pretrained RegNet backbone from here.

python train_net_gmm.py 
--num-gpus 8 
--config-file VOC-Detection/faster-rcnn/regnetx.yaml 
--random-seed 0 
--resume

Before training on VOS, change "VOS.STARTING_ITER" and "VOS.SAMPLE_NUMBER" in the config file to the desired numbers in paper.

Evaluation

Evaluation with the in-distribution dataset to be VOC

Firstly run on the in-distribution dataset:

python apply_net.py 
--test-dataset voc_custom_val 
--config-file VOC-Detection/faster-rcnn/vos.yaml 
--inference-config Inference/standard_nms.yaml 
--random-seed 0 
--image-corruption-level 0 
--visualize 0

Then run on the OOD dataset:

python apply_net.py
--test-dataset coco_ood_val 
--config-file VOC-Detection/faster-rcnn/vos.yaml 
--inference-config Inference/standard_nms.yaml 
--random-seed 0 
--image-corruption-level 0 
--visualize 0

Obtain the metrics using:

python voc_coco_plot.py 
--name vos 
--thres xxx 
--energy 1 
--seed 0

Here the threshold is determined according to ProbDet. It will be displayed in the screen as you finish evaluating on the in-distribution dataset.

Evaluation with the in-distribution dataset to be BDD

Firstly run on the in-distribution dataset:

python apply_net.py 
--test-dataset bdd_custom_val 
--config-file VOC-Detection/faster-rcnn/vos.yaml 
--inference-config Inference/standard_nms.yaml 
--random-seed 0 
--image-corruption-level 0 
--visualize 0

Then run on the OOD dataset:

python apply_net.py 
--test-dataset coco_ood_val_bdd 
--config-file VOC-Detection/faster-rcnn/vos.yaml 
--inference-config Inference/standard_nms.yaml 
--random-seed 0 
--image-corruption-level 0 
--visualize 0

Obtain the metrics using:

python bdd_coco_plot.py
--name vos 
--thres xxx 
--energy 1 
--seed 0

Pretrained models

The pretrained models for Pascal-VOC can be downloaded from vanilla and VOS-ResNet and VOS-RegNet.

The pretrained models for BDD-100k can be downloaded from vanilla and VOS-ResNet and VOS-RegNet.

VOS on Classification models

Train on WideResNet

cd classification/CIFAR/ & 
python train_virtual.py 
--start_epoch 40 
--sample_number 1000 
--sample_from 10000 
--select 1 
--loss_weight 0.1 

where "start_epoch" denotes the starting epoch of the uncertainty regularization branch.

"sample_number" denotes the size of the in-distribution queue.

"sample_from" and "select" are used to approximate the likelihood threshold during virtual outlier synthesis.

"loss_weight" denotes the weight of the regularization loss.

Please see Section 3 and Section 4.1 in the paper for details.

Train on DenseNet

cd classification/CIFAR/ &
python train_virtual_dense.py 
--start_epoch 40 
--sample_number 1000 
--sample_from 10000 
--select 1 
--loss_weight 0.1 

Evaluation on different classifiers

cd classification/CIFAR/ & 
python test.py 
--model_name xx 
--method_name xx 
--score energy 
--num_to_avg 10

where "model_name" denotes the model architectures. ("res" denotes the WideResNet and "dense" denotes the DenseNet.)

"method_name" denotes the checkpoint name you are loading.

Pretrained models

We provide the pretrained models using WideResNet and DenseNet with the in-distribution dataset to be CIFAR-10.

Citation

If you found any part of this code is useful in your research, please consider citing our paper:

 @article{du2022vos,
      title={VOS: Learning What You Don’t Know by Virtual Outlier Synthesis}, 
      author={Du, Xuefeng and Wang, Zhaoning and Cai, Mu and Li, Yixuan},
      journal={Proceedings of the International Conference on Learning Representations},
      year={2022}
}
Owner
CS Research Group led by Prof. Sharon Li
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Segnet is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This is implementation of http://arxiv.org/pdf/15

Pradyumna Reddy Chinthala 190 Dec 15, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
Unsupervised Pre-training for Person Re-identification (LUPerson)

LUPerson Unsupervised Pre-training for Person Re-identification (LUPerson). The repository is for our CVPR2021 paper Unsupervised Pre-training for Per

143 Dec 24, 2022
This is the repository for the paper "Have I done enough planning or should I plan more?"

Metacognitive Learning Tool box https://re.is.mpg.de What Is This? This repository contains two modules used to analyse metacognitive learning in huma

0 Dec 01, 2021
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a

36 Oct 04, 2022
Official PyTorch Implementation of SSMix (Findings of ACL 2021)

SSMix: Saliency-based Span Mixup for Text Classification (Findings of ACL 2021) Official PyTorch Implementation of SSMix | Paper Abstract Data augment

Clova AI Research 52 Dec 27, 2022
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

SimplePose Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, a

Jia Li 256 Dec 24, 2022
Learning to Initialize Neural Networks for Stable and Efficient Training

GradInit This repository hosts the code for experiments in the paper, GradInit: Learning to Initialize Neural Networks for Stable and Efficient Traini

Chen Zhu 124 Dec 30, 2022
AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages

AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages This repository contains the code for the pa

Kelechi 40 Nov 24, 2022
TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.

Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run

Muthu Chidambaram 30 Sep 07, 2021
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology (LMRL Workshop, NeurIPS 2021)

Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology Self-Supervised Vision Transformers Learn Visual Concepts in Histopatholog

Richard Chen 95 Dec 24, 2022
Cosine Annealing With Warmup

CosineAnnealingWithWarmup Formulation The learning rate is annealed using a cosine schedule over the course of learning of n_total total steps with an

zhuyun 4 Apr 18, 2022
DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

562 Jan 02, 2023
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

Jingyun Liang 139 Dec 29, 2022
Generative Flow Networks for Discrete Probabilistic Modeling

Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo

Narsil-Dinghuai Zhang 51 Dec 20, 2022