VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

Related tags

Deep Learningvos
Overview

VOS

This is the source code accompanying the paper VOS: Learning What You Don’t Know by Virtual Outlier Synthesis by Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li

The codebase is heavily based on ProbDet and Detectron2.

Dataset Preparation

PASCAL VOC

Download the processed VOC 2007 and 2012 dataset from here.

The VOC dataset folder should have the following structure:

 └── VOC_DATASET_ROOT
     |
     ├── JPEGImages
     ├── voc0712_train_all.json
     └── val_coco_format.json

COCO

Download COCO2017 dataset from the official website.

Download the OOD dataset (json file) when the in-distribution dataset is Pascal VOC from here.

Download the OOD dataset (json file) when the in-distribution dataset is BDD-100k from here.

Put the two processed OOD json files to ./anntoations

The COCO dataset folder should have the following structure:

 └── COCO_DATASET_ROOT
     |
     ├── annotations
        ├── xxx (the original json files)
        ├── instances_val2017_ood_wrt_bdd_rm_overlap.json
        └── instances_val2017_ood_rm_overlap.json
     ├── train2017
     └── val2017

BDD-100k

Donwload the BDD-100k images from the official website.

Download the processed BDD-100k json files from here and here.

The BDD dataset folder should have the following structure:

 └── BDD_DATASET_ROOT
     |
     ├── images
     ├── val_bdd_converted.json
     └── train_bdd_converted.json

OpenImages

Download our OpenImages validation splits here. We created a tarball that contains the out-of-distribution data splits used in our paper for hyperparameter tuning. Do not modify or rename the internal folders as those paths are hard coded in the dataset reader. The OpenImages dataset is created in a similar way following this paper.

The OpenImages dataset folder should have the following structure:

 └── OEPNIMAGES_DATASET_ROOT
     |
     ├── coco_classes
     └── ood_classes_rm_overlap

Before training, modify the dataset address in the ./detection/core/datasets/setup_datasets.py according to your local dataset address.

Visualization of the OOD datasets

The OOD images with respect to different in-distribution datasets can be downloaded from ID-VOC-OOD-COCO, ID-VOC-OOD-openimages, ID-BDD-OOD-COCO, ID-BDD-OOD-openimages.

Training

Firstly, enter the detection folder by running

cd detection

Vanilla Faster-RCNN with VOC as the in-distribution dataset


python train_net.py
--num-gpus 8
--config-file VOC-Detection/faster-rcnn/vanilla.yaml 
--random-seed 0 
--resume

Vanilla Faster-RCNN with BDD as the in-distribution dataset

python train_net.py 
--num-gpus 8 
--config-file BDD-Detection/faster-rcnn/vanilla.yaml 
--random-seed 0 
--resume

VOS on ResNet

python train_net_gmm.py 
--num-gpus 8 
--config-file VOC-Detection/faster-rcnn/vos.yaml 
--random-seed 0 
--resume

VOS on RegNet

Before training using the RegNet as the backbone, download the pretrained RegNet backbone from here.

python train_net_gmm.py 
--num-gpus 8 
--config-file VOC-Detection/faster-rcnn/regnetx.yaml 
--random-seed 0 
--resume

Before training on VOS, change "VOS.STARTING_ITER" and "VOS.SAMPLE_NUMBER" in the config file to the desired numbers in paper.

Evaluation

Evaluation with the in-distribution dataset to be VOC

Firstly run on the in-distribution dataset:

python apply_net.py 
--test-dataset voc_custom_val 
--config-file VOC-Detection/faster-rcnn/vos.yaml 
--inference-config Inference/standard_nms.yaml 
--random-seed 0 
--image-corruption-level 0 
--visualize 0

Then run on the OOD dataset:

python apply_net.py
--test-dataset coco_ood_val 
--config-file VOC-Detection/faster-rcnn/vos.yaml 
--inference-config Inference/standard_nms.yaml 
--random-seed 0 
--image-corruption-level 0 
--visualize 0

Obtain the metrics using:

python voc_coco_plot.py 
--name vos 
--thres xxx 
--energy 1 
--seed 0

Here the threshold is determined according to ProbDet. It will be displayed in the screen as you finish evaluating on the in-distribution dataset.

Evaluation with the in-distribution dataset to be BDD

Firstly run on the in-distribution dataset:

python apply_net.py 
--test-dataset bdd_custom_val 
--config-file VOC-Detection/faster-rcnn/vos.yaml 
--inference-config Inference/standard_nms.yaml 
--random-seed 0 
--image-corruption-level 0 
--visualize 0

Then run on the OOD dataset:

python apply_net.py 
--test-dataset coco_ood_val_bdd 
--config-file VOC-Detection/faster-rcnn/vos.yaml 
--inference-config Inference/standard_nms.yaml 
--random-seed 0 
--image-corruption-level 0 
--visualize 0

Obtain the metrics using:

python bdd_coco_plot.py
--name vos 
--thres xxx 
--energy 1 
--seed 0

Pretrained models

The pretrained models for Pascal-VOC can be downloaded from vanilla and VOS-ResNet and VOS-RegNet.

The pretrained models for BDD-100k can be downloaded from vanilla and VOS-ResNet and VOS-RegNet.

VOS on Classification models

Train on WideResNet

cd classification/CIFAR/ & 
python train_virtual.py 
--start_epoch 40 
--sample_number 1000 
--sample_from 10000 
--select 1 
--loss_weight 0.1 

where "start_epoch" denotes the starting epoch of the uncertainty regularization branch.

"sample_number" denotes the size of the in-distribution queue.

"sample_from" and "select" are used to approximate the likelihood threshold during virtual outlier synthesis.

"loss_weight" denotes the weight of the regularization loss.

Please see Section 3 and Section 4.1 in the paper for details.

Train on DenseNet

cd classification/CIFAR/ &
python train_virtual_dense.py 
--start_epoch 40 
--sample_number 1000 
--sample_from 10000 
--select 1 
--loss_weight 0.1 

Evaluation on different classifiers

cd classification/CIFAR/ & 
python test.py 
--model_name xx 
--method_name xx 
--score energy 
--num_to_avg 10

where "model_name" denotes the model architectures. ("res" denotes the WideResNet and "dense" denotes the DenseNet.)

"method_name" denotes the checkpoint name you are loading.

Pretrained models

We provide the pretrained models using WideResNet and DenseNet with the in-distribution dataset to be CIFAR-10.

Citation

If you found any part of this code is useful in your research, please consider citing our paper:

 @article{du2022vos,
      title={VOS: Learning What You Don’t Know by Virtual Outlier Synthesis}, 
      author={Du, Xuefeng and Wang, Zhaoning and Cai, Mu and Li, Yixuan},
      journal={Proceedings of the International Conference on Learning Representations},
      year={2022}
}
Owner
CS Research Group led by Prof. Sharon Li
This is the source code for generating the ASL-Skeleton3D and ASL-Phono datasets. Check out the README.md for more details.

ASL-Skeleton3D and ASL-Phono Datasets Generator The ASL-Skeleton3D contains a representation based on mapping into the three-dimensional space the coo

Cleison Amorim 5 Nov 20, 2022
Flybirds - BDD-driven natural language automated testing framework, present by Trip Flight

Flybird | English Version 行为驱动开发(Behavior-driven development,缩写BDD),是一种软件过程的思想或者

Ctrip, Inc. 706 Dec 30, 2022
Code for layerwise detection of linguistic anomaly paper (ACL 2021)

Layerwise Anomaly This repository contains the source code and data for our ACL 2021 paper: "How is BERT surprised? Layerwise detection of linguistic

6 Dec 07, 2022
Repo for the Video Person Clustering dataset, and code for the associated paper

Video Person Clustering Repo for the Video Person Clustering dataset, and code for the associated paper. This reporsitory contains the Video Person Cl

Andrew Brown 47 Nov 02, 2022
Implement of homography net by pytorch

HomographyNet Implement of homography net by pytorch Brief Introduction This project is based on the work Homography-Net: @article{detone2016deep, t

ronghao_CN 4 May 19, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022
Transparent Transformer Segmentation

Transparent Transformer Segmentation Introduction This repository contains the data and code for IJCAI 2021 paper Segmenting transparent object in the

谢恩泽 140 Jan 02, 2023
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Yandex Research 20 Dec 19, 2022
Music Generation using Neural Networks Streamlit App

Music_Gen_Streamlit "Music Generation using Neural Networks" Streamlit App TO DO: Make a run_app.sh Introduction [~5 min] (Sohaib) Team Member names/i

Muhammad Sohaib Arshid 6 Aug 09, 2022
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
Deep learning models for change detection of remote sensing images

Change Detection Models (Remote Sensing) Python library with Neural Networks for Change Detection based on PyTorch. ⚡ ⚡ ⚡ I am trying to build this pr

Kaiyu Li 176 Dec 24, 2022
Table-Extractor 表格抽取

(t)able-(ex)tractor 本项目旨在实现pdf表格抽取。 Models 版面分析模块(Yolo) 表格结构抽取(ResNet + Transformer) 文字识别模块(CRNN + CTC Loss) Acknowledgements TableMaster attention-i

2 Jan 15, 2022
Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch

MeMOT - Pytorch (wip) Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch. This paper is just one in a line of work, but importan

Phil Wang 15 May 09, 2022
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
Voice Conversion by CycleGAN (语音克隆/语音转换):CycleGAN-VC3

CycleGAN-VC3-PyTorch 中文说明 | English This code is a PyTorch implementation for paper: CycleGAN-VC3: Examining and Improving CycleGAN-VCs for Mel-spectr

Kun Ma 110 Dec 24, 2022
Boostcamp CV Serving For Python

Boostcamp-CV-Serving Prerequisites MySQL GCP Cloud Storage GCP key file Sentry Streamlit Cloud Secrets: .streamlit/secrets.toml #DO NOT SHARE THIS I

Jungwon Seo 19 Feb 22, 2022
Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

ming71 56 Nov 28, 2022
The code repository for EMNLP 2021 paper "Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization".

Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization [Paper] accepted at the EMNLP 2021: Vision Guided Genera

CAiRE 42 Jan 07, 2023
Invertible conditional GANs for image editing

Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb

Guim 278 Dec 12, 2022