VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

Related tags

Deep Learningvos
Overview

VOS

This is the source code accompanying the paper VOS: Learning What You Don’t Know by Virtual Outlier Synthesis by Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li

The codebase is heavily based on ProbDet and Detectron2.

Dataset Preparation

PASCAL VOC

Download the processed VOC 2007 and 2012 dataset from here.

The VOC dataset folder should have the following structure:

 └── VOC_DATASET_ROOT
     |
     ├── JPEGImages
     ├── voc0712_train_all.json
     └── val_coco_format.json

COCO

Download COCO2017 dataset from the official website.

Download the OOD dataset (json file) when the in-distribution dataset is Pascal VOC from here.

Download the OOD dataset (json file) when the in-distribution dataset is BDD-100k from here.

Put the two processed OOD json files to ./anntoations

The COCO dataset folder should have the following structure:

 └── COCO_DATASET_ROOT
     |
     ├── annotations
        ├── xxx (the original json files)
        ├── instances_val2017_ood_wrt_bdd_rm_overlap.json
        └── instances_val2017_ood_rm_overlap.json
     ├── train2017
     └── val2017

BDD-100k

Donwload the BDD-100k images from the official website.

Download the processed BDD-100k json files from here and here.

The BDD dataset folder should have the following structure:

 └── BDD_DATASET_ROOT
     |
     ├── images
     ├── val_bdd_converted.json
     └── train_bdd_converted.json

OpenImages

Download our OpenImages validation splits here. We created a tarball that contains the out-of-distribution data splits used in our paper for hyperparameter tuning. Do not modify or rename the internal folders as those paths are hard coded in the dataset reader. The OpenImages dataset is created in a similar way following this paper.

The OpenImages dataset folder should have the following structure:

 └── OEPNIMAGES_DATASET_ROOT
     |
     ├── coco_classes
     └── ood_classes_rm_overlap

Before training, modify the dataset address in the ./detection/core/datasets/setup_datasets.py according to your local dataset address.

Visualization of the OOD datasets

The OOD images with respect to different in-distribution datasets can be downloaded from ID-VOC-OOD-COCO, ID-VOC-OOD-openimages, ID-BDD-OOD-COCO, ID-BDD-OOD-openimages.

Training

Firstly, enter the detection folder by running

cd detection

Vanilla Faster-RCNN with VOC as the in-distribution dataset


python train_net.py
--num-gpus 8
--config-file VOC-Detection/faster-rcnn/vanilla.yaml 
--random-seed 0 
--resume

Vanilla Faster-RCNN with BDD as the in-distribution dataset

python train_net.py 
--num-gpus 8 
--config-file BDD-Detection/faster-rcnn/vanilla.yaml 
--random-seed 0 
--resume

VOS on ResNet

python train_net_gmm.py 
--num-gpus 8 
--config-file VOC-Detection/faster-rcnn/vos.yaml 
--random-seed 0 
--resume

VOS on RegNet

Before training using the RegNet as the backbone, download the pretrained RegNet backbone from here.

python train_net_gmm.py 
--num-gpus 8 
--config-file VOC-Detection/faster-rcnn/regnetx.yaml 
--random-seed 0 
--resume

Before training on VOS, change "VOS.STARTING_ITER" and "VOS.SAMPLE_NUMBER" in the config file to the desired numbers in paper.

Evaluation

Evaluation with the in-distribution dataset to be VOC

Firstly run on the in-distribution dataset:

python apply_net.py 
--test-dataset voc_custom_val 
--config-file VOC-Detection/faster-rcnn/vos.yaml 
--inference-config Inference/standard_nms.yaml 
--random-seed 0 
--image-corruption-level 0 
--visualize 0

Then run on the OOD dataset:

python apply_net.py
--test-dataset coco_ood_val 
--config-file VOC-Detection/faster-rcnn/vos.yaml 
--inference-config Inference/standard_nms.yaml 
--random-seed 0 
--image-corruption-level 0 
--visualize 0

Obtain the metrics using:

python voc_coco_plot.py 
--name vos 
--thres xxx 
--energy 1 
--seed 0

Here the threshold is determined according to ProbDet. It will be displayed in the screen as you finish evaluating on the in-distribution dataset.

Evaluation with the in-distribution dataset to be BDD

Firstly run on the in-distribution dataset:

python apply_net.py 
--test-dataset bdd_custom_val 
--config-file VOC-Detection/faster-rcnn/vos.yaml 
--inference-config Inference/standard_nms.yaml 
--random-seed 0 
--image-corruption-level 0 
--visualize 0

Then run on the OOD dataset:

python apply_net.py 
--test-dataset coco_ood_val_bdd 
--config-file VOC-Detection/faster-rcnn/vos.yaml 
--inference-config Inference/standard_nms.yaml 
--random-seed 0 
--image-corruption-level 0 
--visualize 0

Obtain the metrics using:

python bdd_coco_plot.py
--name vos 
--thres xxx 
--energy 1 
--seed 0

Pretrained models

The pretrained models for Pascal-VOC can be downloaded from vanilla and VOS-ResNet and VOS-RegNet.

The pretrained models for BDD-100k can be downloaded from vanilla and VOS-ResNet and VOS-RegNet.

VOS on Classification models

Train on WideResNet

cd classification/CIFAR/ & 
python train_virtual.py 
--start_epoch 40 
--sample_number 1000 
--sample_from 10000 
--select 1 
--loss_weight 0.1 

where "start_epoch" denotes the starting epoch of the uncertainty regularization branch.

"sample_number" denotes the size of the in-distribution queue.

"sample_from" and "select" are used to approximate the likelihood threshold during virtual outlier synthesis.

"loss_weight" denotes the weight of the regularization loss.

Please see Section 3 and Section 4.1 in the paper for details.

Train on DenseNet

cd classification/CIFAR/ &
python train_virtual_dense.py 
--start_epoch 40 
--sample_number 1000 
--sample_from 10000 
--select 1 
--loss_weight 0.1 

Evaluation on different classifiers

cd classification/CIFAR/ & 
python test.py 
--model_name xx 
--method_name xx 
--score energy 
--num_to_avg 10

where "model_name" denotes the model architectures. ("res" denotes the WideResNet and "dense" denotes the DenseNet.)

"method_name" denotes the checkpoint name you are loading.

Pretrained models

We provide the pretrained models using WideResNet and DenseNet with the in-distribution dataset to be CIFAR-10.

Citation

If you found any part of this code is useful in your research, please consider citing our paper:

 @article{du2022vos,
      title={VOS: Learning What You Don’t Know by Virtual Outlier Synthesis}, 
      author={Du, Xuefeng and Wang, Zhaoning and Cai, Mu and Li, Yixuan},
      journal={Proceedings of the International Conference on Learning Representations},
      year={2022}
}
Owner
CS Research Group led by Prof. Sharon Li
Official repository for the paper F, B, Alpha Matting

FBA Matting Official repository for the paper F, B, Alpha Matting. This paper and project is under heavy revision for peer reviewed publication, and s

Marco Forte 404 Jan 05, 2023
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
Code to produce syntactic representations that can be used to study syntax processing in the human brain

Can fMRI reveal the representation of syntactic structure in the brain? The code base for our paper on understanding syntactic representations in the

Aniketh Janardhan Reddy 4 Dec 18, 2022
AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

AsymmetricGAN for Image-to-Image Translation AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation AsymmetricGAN Framework for Hand Gest

Hao Tang 42 Jan 15, 2022
A medical imaging framework for Pytorch

Welcome to MedicalTorch MedicalTorch is an open-source framework for PyTorch, implementing an extensive set of loaders, pre-processors and datasets fo

Christian S. Perone 799 Jan 03, 2023
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNNs fruits360 Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class. CNN on a pretrained model Build a CNN on a pretrained model, Res

Ricky Chuang 1 Mar 07, 2022
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 1.9.0 ubuntu20/python3.9/pip ubuntu20/python3.8/p

ESPnet 5.9k Jan 04, 2023
Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision

MLP-Mixer: An all-MLP Architecture for Vision This repo contains PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision. Usage : impo

Rishikesh (ऋषिकेश) 175 Dec 23, 2022
Hypernetwork-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels

Hypernet-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels The implementation of Hypernet-Ensemble Le

Sungmin Hong 6 Jul 18, 2022
🔮 A refreshing functional take on deep learning, compatible with your favorite libraries

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries From the makers of spaCy, Prodigy and FastAPI Thinc is a

Explosion 2.6k Dec 30, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
Code for "NeRS: Neural Reflectance Surfaces for Sparse-View 3D Reconstruction in the Wild," in NeurIPS 2021

Code for Neural Reflectance Surfaces (NeRS) [arXiv] [Project Page] [Colab Demo] [Bibtex] This repo contains the code for NeRS: Neural Reflectance Surf

Jason Y. Zhang 234 Dec 30, 2022
Fast, flexible and fun neural networks.

Brainstorm Discontinuation Notice Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as

IDSIA 1.3k Nov 21, 2022
Object recognition using Azure Custom Vision AI and Azure Functions

Step by Step on how to create an object recognition model using Custom Vision, export the model and run the model in an Azure Function

El Bruno 11 Jul 08, 2022
Intrusion Test Tool with Python

P3ntsT00L Uma ferramenta escrita em Python, feita para Teste de intrusão. Requisitos ter o python 3.9.8 instalado em sua máquina. ter a git instalada

josh washington 2 Dec 27, 2021
Histology images query (unsupervised)

110-1-NTU-DBME5028-Histology-images-query Final Project: Histology images query (unsupervised) Kaggle: https://www.kaggle.com/c/histology-images-query

1 Jan 05, 2022
Code repo for "FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation" (ICCV 2021)

FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation (ICCV 2021) This repository contains the implementation of th

Yuhang Zang 21 Dec 17, 2022
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023