AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Overview

License CC BY-NC-SA 4.0 Python 3.6 Packagist Last Commit Maintenance Contributing Ask Me Anything !

AsymmetricGAN for Image-to-Image Translation

AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation

UN_Framework

AsymmetricGAN Framework for Hand Gesture-to-Gesture Translation

SU_Framework

Conference paper | Extended paper | Project page | Slides | Poster

Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation.
Hao Tang1, Dan Xu2, Wei Wang3, Yan Yan4 and Nicu Sebe1.
1University of Trento, Italy, 2University of Oxford, UK, 3EPFL, Switzerland, 4Texas State University, USA.
In ACCV 2018 (Oral).
The repository offers the official implementation of our paper in PyTorch.

License

Copyright (C) 2019 University of Trento, Italy.

All rights reserved. Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International)

The code is released for academic research use only. For commercial use, please contact [email protected].

Installation

Clone this repo.

git clone https://github.com/Ha0Tang/AsymmetricGAN
cd AsymmetricGAN/

This code requires PyTorch 0.4.1 and python 3.6+. Please install dependencies by

pip install -r requirements.txt (for pip users)

or

./scripts/conda_deps.sh (for Conda users)

To reproduce the results reported in the paper, you would need two NVIDIA GeForce GTX 1080 Ti GPUs or two NVIDIA TITAN Xp GPUs.

Dataset Preparation

For hand gesture-to-gesture translation task, we use NTU Hand Digit and Creative Senz3D datasets. Both datasets must be downloaded beforehand. Please download them on the respective webpages. In addition, follow GestureGAN to prepare both datasets. Please cite their papers if you use the data.

Preparing NTU Hand Digit Dataset. The dataset can be downloaded in this paper. After downloading it we adopt OpenPose to generate hand skeletons and use them as training and testing data in our experiments. Note that we filter out failure cases in hand gesture estimation for training and testing. Please cite their papers if you use this dataset. Train/Test splits for Creative Senz3D dataset can be downloaded from here.

Preparing Creative Senz3D Dataset. The dataset can be downloaded here. After downloading it we adopt OpenPose to generate hand skeletons and use them as training data in our experiments. Note that we filter out failure cases in hand gesture estimation for training and testing. Please cite their papers if you use this dataset. Train/Test splits for Creative Senz3D dataset can be downloaded from here.

Preparing Your Own Datasets. Each training sample in the dataset will contain {Ix,Iy,Cx,Cy}, where Ix=image x, Iy=image y, Cx=Controllable structure of image x, and Cy=Controllable structure of image y. Of course, you can use AsymmetricGAN for your own datasets and tasks.

Generating Images Using Pretrained Model

Once the dataset is ready. The result images can be generated using pretrained models.

  1. You can download a pretrained model (e.g. ntu_asymmetricgan) with the following script:
bash ./scripts/download_asymmetricgan_model.sh ntu_asymmetricgan

The pretrained model is saved at ./checkpoints/[type]_pretrained. Check here for all the available AsymmetricGAN models.

  1. Generate images using the pretrained model.

For NTU Dataset:

python test.py --dataroot [path_to_NTU_dataset] \
	--name ntu_asymmetricgan_pretrained \
	--model asymmetricgan \
	--which_model_netG resnet_9blocks \
	--which_direction AtoB \
	--dataset_mode aligned \
	--norm instance \
	--gpu_ids 0 \
	--ngf_t 64 \
	--ngf_r 4 \
	--batchSize 4 \
	--loadSize 286 \
	--fineSize 256 \
	--no_flip

For Senz3D Dataset:

python test.py --dataroot [path_to_Senz3D_dataset] \
	--name senz3d_asymmetricgan_pretrained \
	--model asymmetricgan \
	--which_model_netG resnet_9blocks \
	--which_direction AtoB \
	--dataset_mode aligned \
	--norm instance \
	--gpu_ids 0 \
	--ngf_t 64 \
	--ngf_r 4 \
	--batchSize 4 \
	--loadSize 286 \
	--fineSize 256 \
	--no_flip

If you are running on CPU mode, change --gpu_ids 0 to --gpu_ids -1. Note that testing requires a lot of time and large amount of disk storage space. If you don't have enough space, append --saveDisk on the command line.

  1. The outputs images are stored at ./results/[type]_pretrained/ by default. You can view them using the autogenerated HTML file in the directory.

Training New Models

New models can be trained with the following commands.

  1. Prepare dataset.

  2. Train.

For NTU dataset:

export CUDA_VISIBLE_DEVICES=3,4;
python train.py --dataroot ./datasets/ntu \
	--name ntu_asymmetricgan \
	--model asymmetricgan \
	--which_model_netG resnet_9blocks \
	--which_direction AtoB \
	--dataset_mode aligned \
	--norm instance \
	--gpu_ids 0,1 \
	--ngf_t 64 \
	--ngf_r 4 \
	--batchSize 4 \
	--loadSize 286 \
	--fineSize 256 \
	--no_flip \
	--lambda_L1 800 \
	--cyc_L1 0.1 \
	--lambda_identity 0.01 \
	--lambda_feat 1000 \
	--display_id 0 \
	--niter 10 \
	--niter_decay 10

For Senz3D dataset:

export CUDA_VISIBLE_DEVICES=5,7;
python train.py --dataroot ./datasets/senz3d \
	--name senz3d_asymmetricgan \
	--model asymmetricgan \
	--which_model_netG resnet_9blocks \
	--which_direction AtoB \
	--dataset_mode aligned \
	--norm instance \
	--gpu_ids 0,1 \
	--ngf_t 64 \
	--ngf_r 4 \
	--batchSize 4 \
	--loadSize 286 \
	--fineSize 256 \
	--no_flip \
	--lambda_L1 800 \
	--cyc_L1 0.1 \
	--lambda_identity 0.01 \
	--lambda_feat 1000 \
	--display_id 0 \
	--niter 10 \
	--niter_decay 10

There are many options you can specify. Please use python train.py --help. The specified options are printed to the console. To specify the number of GPUs to utilize, use export CUDA_VISIBLE_DEVICES=[GPU_ID].

To view training results and loss plots on local computers, set --display_id to a non-zero value and run python -m visdom.server on a new terminal and click the URL http://localhost:8097. On a remote server, replace localhost with your server's name, such as http://server.trento.cs.edu:8097.

Can I continue/resume my training?

To fine-tune a pre-trained model, or resume the previous training, use the --continue_train --which_epoch --epoch_count flag. The program will then load the model based on epoch you set in --which_epoch . Set --epoch_count to specify a different starting epoch count.

Testing

Testing is similar to testing pretrained models.

For NTU dataset:

python test.py --dataroot [path_to_NTU_dataset] \
	--name ntu_asymmetricgan \
	--model asymmetricgan \
	--which_model_netG resnet_9blocks \
	--which_direction AtoB \
	--dataset_mode aligned \
	--norm instance \
	--gpu_ids 0 \
	--ngf_t 64 \
	--ngf_r 4 \
	--batchSize 4 \
	--loadSize 286 \
	--fineSize 256 \
	--no_flip

For Senz3D dataset:

python test.py --dataroot [path_to_Senz3D_dataset] \
	--name senz3d_asymmetricgan \
	--model asymmetricgan \
	--which_model_netG resnet_9blocks \
	--which_direction AtoB \
	--dataset_mode aligned \
	--norm instance \
	--gpu_ids 0 \
	--ngf_t 64 \
	--ngf_r 4 \
	--batchSize 4 \
	--loadSize 286 \
	--fineSize 256 \
	--no_flip

Use --how_many to specify the maximum number of images to generate. By default, it loads the latest checkpoint. It can be changed using --which_epoch.

Code Structure

  • train.py, test.py: the entry point for training and testing.
  • models/asymmetricgan_model.py: creates the networks, and compute the losses.
  • models/networks/: defines the architecture of all models for GestureGAN.
  • options/: creates option lists using argparse package.
  • data/: defines the class for loading images and controllable structures.

Evaluation Code

We use several metrics to evaluate the quality of the generated images:

To Do List

  • Upload supervised AsymmetricGAN code for hand gesture-to-gesture translation
  • Upload unsupervised AsymmetricGAN code for multi-domain image-to-image translation: code

Citation

If you use this code for your research, please cite our papers.

@article{tang2019asymmetric,
  title={Asymmetric Generative Adversarial Networks for Image-to-Image Translation},
  author={Hao Tang and Dan Xu and Hong Liu and Nicu Sebe},
  journal={arXiv preprint arXiv:1912.06931},
  year={2019}
}

@inproceedings{tang2018dual,
  title={Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation},
  author={Tang, Hao and Xu, Dan and Wang, Wei and Yan, Yan and Sebe, Nicu},
  booktitle={ACCV},
  year={2018}
}

Acknowledgments

This source code is inspired by Pix2pix and GestureGAN.

Related Projects

Contributions

If you have any questions/comments/bug reports, feel free to open a github issue or pull a request or e-mail to the author Hao Tang ([email protected]).

Owner
Hao Tang
To develop a complete mind: Study the science of art; Study the art of science. Learn how to see. Realize that everything connects to everything else.
Hao Tang
《Lerning n Intrinsic Grment Spce for Interctive Authoring of Grment Animtion》

Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation Overview This is the demo code for training a motion invariant enco

YuanBo 213 Dec 14, 2022
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
Machine learning Bot detection technique, based on United States election dataset

Machine learning Bot detection technique, based on United States election dataset (2020). Current github repo provides implementation described in pap

Alexander Shevtsov 4 Nov 20, 2022
使用深度学习框架提取视频硬字幕;docker容器免安装深度学习库,使用本地api接口使得界面和后端识别分离;

extract-video-subtittle 使用深度学习框架提取视频硬字幕; 本地识别无需联网; CPU识别速度可观; 容器提供API接口; 运行环境 本项目运行环境非常好搭建,我做好了docker容器免安装各种深度学习包; 提供windows界面操作; 容器为CPU版本; 视频演示 https

歌者 16 Aug 06, 2022
[ECE NTUA] 👁 Computer Vision - Lab Projects & Theoretical Problem Sets (2020-2021)

Computer Vision - NTUA (2020-2021) This repository hosts the lab projects and theoretical problem sets of the Computer Vision course held by ECE NTUA

Dimitris Dimos 6 Jul 21, 2022
Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

TOQ-Nets-PyTorch-Release Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets). Temporal and Object Quantification Net

Zhezheng Luo 9 Jun 30, 2022
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

695 Jan 05, 2023
Interactive dimensionality reduction for large datasets

BlosSOM 🌼 BlosSOM is a graphical environment for running semi-supervised dimensionality reduction with EmbedSOM. You can use it to explore multidimen

19 Dec 14, 2022
A Pytorch implement of paper "Anomaly detection in dynamic graphs via transformer" (TADDY).

TADDY: Anomaly detection in dynamic graphs via transformer This repo covers an reference implementation for the paper "Anomaly detection in dynamic gr

Yue Tan 21 Nov 24, 2022
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Explanatory Learning: Beyond Empiricism in Neural Networks

Explanatory Learning This is the official repository for "Explanatory Learning: Beyond Empiricism in Neural Networks". Datasets Download the datasets

GLADIA Research Group 10 Dec 06, 2022
Tensors and Dynamic neural networks in Python with strong GPU acceleration

PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b

61.4k Jan 04, 2023
phylotorch-bito is a package providing an interface to BITO for phylotorch

phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co

Mathieu Fourment 2 Sep 01, 2022
202 Jan 06, 2023
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ

Goh Kun Shun (KHUN) 10 Nov 03, 2022
Open-Ended Commonsense Reasoning (NAACL 2021)

Open-Ended Commonsense Reasoning Quick links: [Paper] | [Video] | [Slides] | [Documentation] This is the repository of the paper, Differentiable Open-

(Bill) Yuchen Lin 31 Oct 19, 2022
Distributional Sliced-Wasserstein distance code

Distributional Sliced Wasserstein distance This is a pytorch implementation of the paper "Distributional Sliced-Wasserstein and Applications to Genera

VinAI Research 39 Jan 01, 2023