AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Overview

License CC BY-NC-SA 4.0 Python 3.6 Packagist Last Commit Maintenance Contributing Ask Me Anything !

AsymmetricGAN for Image-to-Image Translation

AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation

UN_Framework

AsymmetricGAN Framework for Hand Gesture-to-Gesture Translation

SU_Framework

Conference paper | Extended paper | Project page | Slides | Poster

Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation.
Hao Tang1, Dan Xu2, Wei Wang3, Yan Yan4 and Nicu Sebe1.
1University of Trento, Italy, 2University of Oxford, UK, 3EPFL, Switzerland, 4Texas State University, USA.
In ACCV 2018 (Oral).
The repository offers the official implementation of our paper in PyTorch.

License

Copyright (C) 2019 University of Trento, Italy.

All rights reserved. Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International)

The code is released for academic research use only. For commercial use, please contact [email protected].

Installation

Clone this repo.

git clone https://github.com/Ha0Tang/AsymmetricGAN
cd AsymmetricGAN/

This code requires PyTorch 0.4.1 and python 3.6+. Please install dependencies by

pip install -r requirements.txt (for pip users)

or

./scripts/conda_deps.sh (for Conda users)

To reproduce the results reported in the paper, you would need two NVIDIA GeForce GTX 1080 Ti GPUs or two NVIDIA TITAN Xp GPUs.

Dataset Preparation

For hand gesture-to-gesture translation task, we use NTU Hand Digit and Creative Senz3D datasets. Both datasets must be downloaded beforehand. Please download them on the respective webpages. In addition, follow GestureGAN to prepare both datasets. Please cite their papers if you use the data.

Preparing NTU Hand Digit Dataset. The dataset can be downloaded in this paper. After downloading it we adopt OpenPose to generate hand skeletons and use them as training and testing data in our experiments. Note that we filter out failure cases in hand gesture estimation for training and testing. Please cite their papers if you use this dataset. Train/Test splits for Creative Senz3D dataset can be downloaded from here.

Preparing Creative Senz3D Dataset. The dataset can be downloaded here. After downloading it we adopt OpenPose to generate hand skeletons and use them as training data in our experiments. Note that we filter out failure cases in hand gesture estimation for training and testing. Please cite their papers if you use this dataset. Train/Test splits for Creative Senz3D dataset can be downloaded from here.

Preparing Your Own Datasets. Each training sample in the dataset will contain {Ix,Iy,Cx,Cy}, where Ix=image x, Iy=image y, Cx=Controllable structure of image x, and Cy=Controllable structure of image y. Of course, you can use AsymmetricGAN for your own datasets and tasks.

Generating Images Using Pretrained Model

Once the dataset is ready. The result images can be generated using pretrained models.

  1. You can download a pretrained model (e.g. ntu_asymmetricgan) with the following script:
bash ./scripts/download_asymmetricgan_model.sh ntu_asymmetricgan

The pretrained model is saved at ./checkpoints/[type]_pretrained. Check here for all the available AsymmetricGAN models.

  1. Generate images using the pretrained model.

For NTU Dataset:

python test.py --dataroot [path_to_NTU_dataset] \
	--name ntu_asymmetricgan_pretrained \
	--model asymmetricgan \
	--which_model_netG resnet_9blocks \
	--which_direction AtoB \
	--dataset_mode aligned \
	--norm instance \
	--gpu_ids 0 \
	--ngf_t 64 \
	--ngf_r 4 \
	--batchSize 4 \
	--loadSize 286 \
	--fineSize 256 \
	--no_flip

For Senz3D Dataset:

python test.py --dataroot [path_to_Senz3D_dataset] \
	--name senz3d_asymmetricgan_pretrained \
	--model asymmetricgan \
	--which_model_netG resnet_9blocks \
	--which_direction AtoB \
	--dataset_mode aligned \
	--norm instance \
	--gpu_ids 0 \
	--ngf_t 64 \
	--ngf_r 4 \
	--batchSize 4 \
	--loadSize 286 \
	--fineSize 256 \
	--no_flip

If you are running on CPU mode, change --gpu_ids 0 to --gpu_ids -1. Note that testing requires a lot of time and large amount of disk storage space. If you don't have enough space, append --saveDisk on the command line.

  1. The outputs images are stored at ./results/[type]_pretrained/ by default. You can view them using the autogenerated HTML file in the directory.

Training New Models

New models can be trained with the following commands.

  1. Prepare dataset.

  2. Train.

For NTU dataset:

export CUDA_VISIBLE_DEVICES=3,4;
python train.py --dataroot ./datasets/ntu \
	--name ntu_asymmetricgan \
	--model asymmetricgan \
	--which_model_netG resnet_9blocks \
	--which_direction AtoB \
	--dataset_mode aligned \
	--norm instance \
	--gpu_ids 0,1 \
	--ngf_t 64 \
	--ngf_r 4 \
	--batchSize 4 \
	--loadSize 286 \
	--fineSize 256 \
	--no_flip \
	--lambda_L1 800 \
	--cyc_L1 0.1 \
	--lambda_identity 0.01 \
	--lambda_feat 1000 \
	--display_id 0 \
	--niter 10 \
	--niter_decay 10

For Senz3D dataset:

export CUDA_VISIBLE_DEVICES=5,7;
python train.py --dataroot ./datasets/senz3d \
	--name senz3d_asymmetricgan \
	--model asymmetricgan \
	--which_model_netG resnet_9blocks \
	--which_direction AtoB \
	--dataset_mode aligned \
	--norm instance \
	--gpu_ids 0,1 \
	--ngf_t 64 \
	--ngf_r 4 \
	--batchSize 4 \
	--loadSize 286 \
	--fineSize 256 \
	--no_flip \
	--lambda_L1 800 \
	--cyc_L1 0.1 \
	--lambda_identity 0.01 \
	--lambda_feat 1000 \
	--display_id 0 \
	--niter 10 \
	--niter_decay 10

There are many options you can specify. Please use python train.py --help. The specified options are printed to the console. To specify the number of GPUs to utilize, use export CUDA_VISIBLE_DEVICES=[GPU_ID].

To view training results and loss plots on local computers, set --display_id to a non-zero value and run python -m visdom.server on a new terminal and click the URL http://localhost:8097. On a remote server, replace localhost with your server's name, such as http://server.trento.cs.edu:8097.

Can I continue/resume my training?

To fine-tune a pre-trained model, or resume the previous training, use the --continue_train --which_epoch --epoch_count flag. The program will then load the model based on epoch you set in --which_epoch . Set --epoch_count to specify a different starting epoch count.

Testing

Testing is similar to testing pretrained models.

For NTU dataset:

python test.py --dataroot [path_to_NTU_dataset] \
	--name ntu_asymmetricgan \
	--model asymmetricgan \
	--which_model_netG resnet_9blocks \
	--which_direction AtoB \
	--dataset_mode aligned \
	--norm instance \
	--gpu_ids 0 \
	--ngf_t 64 \
	--ngf_r 4 \
	--batchSize 4 \
	--loadSize 286 \
	--fineSize 256 \
	--no_flip

For Senz3D dataset:

python test.py --dataroot [path_to_Senz3D_dataset] \
	--name senz3d_asymmetricgan \
	--model asymmetricgan \
	--which_model_netG resnet_9blocks \
	--which_direction AtoB \
	--dataset_mode aligned \
	--norm instance \
	--gpu_ids 0 \
	--ngf_t 64 \
	--ngf_r 4 \
	--batchSize 4 \
	--loadSize 286 \
	--fineSize 256 \
	--no_flip

Use --how_many to specify the maximum number of images to generate. By default, it loads the latest checkpoint. It can be changed using --which_epoch.

Code Structure

  • train.py, test.py: the entry point for training and testing.
  • models/asymmetricgan_model.py: creates the networks, and compute the losses.
  • models/networks/: defines the architecture of all models for GestureGAN.
  • options/: creates option lists using argparse package.
  • data/: defines the class for loading images and controllable structures.

Evaluation Code

We use several metrics to evaluate the quality of the generated images:

To Do List

  • Upload supervised AsymmetricGAN code for hand gesture-to-gesture translation
  • Upload unsupervised AsymmetricGAN code for multi-domain image-to-image translation: code

Citation

If you use this code for your research, please cite our papers.

@article{tang2019asymmetric,
  title={Asymmetric Generative Adversarial Networks for Image-to-Image Translation},
  author={Hao Tang and Dan Xu and Hong Liu and Nicu Sebe},
  journal={arXiv preprint arXiv:1912.06931},
  year={2019}
}

@inproceedings{tang2018dual,
  title={Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation},
  author={Tang, Hao and Xu, Dan and Wang, Wei and Yan, Yan and Sebe, Nicu},
  booktitle={ACCV},
  year={2018}
}

Acknowledgments

This source code is inspired by Pix2pix and GestureGAN.

Related Projects

Contributions

If you have any questions/comments/bug reports, feel free to open a github issue or pull a request or e-mail to the author Hao Tang ([email protected]).

Owner
Hao Tang
To develop a complete mind: Study the science of art; Study the art of science. Learn how to see. Realize that everything connects to everything else.
Hao Tang
Telegram chatbot created with deep learning model (LSTM) and telebot library.

Telegram chatbot Telegram chatbot created with deep learning model (LSTM) and telebot library. Description This program will allow you to create very

1 Jan 04, 2022
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
Llvlir - Low Level Variable Length Intermediate Representation

Low Level Variable Length Intermediate Representation Low Level Variable Length

Michael Clark 2 Jan 24, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification Code release for The Devil is in the Channels: Mutual-Channel

PRIS-CV: Computer Vision Group 230 Dec 31, 2022
This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

CEDR This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper

phoenix 3 Feb 27, 2022
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible

pyrelational is a python active learning library developed by Relation Therapeutics for rapidly implementing active learning pipelines from data management, model development (and Bayesian approximat

Relation Therapeutics 95 Dec 27, 2022
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard test set accuracy

PixMix Introduction In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard te

Andy Zou 79 Dec 30, 2022
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

Yifan Wang 66 Nov 08, 2022
Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles

Workspace Permissions Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles. Features Configure foreach workspace

Patrick.St. 18 Sep 26, 2022
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith

1 Sep 14, 2020
A Pytorch loader for MVTecAD dataset.

MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The

Jiyuan 1 Dec 27, 2021
Graph WaveNet apdapted for brain connectivity analysis.

Graph WaveNet for brain network analysis This is the implementation of the Graph WaveNet model used in our manuscript: S. Wein , A. Schüller, A. M. To

4 Dec 17, 2022
A PyTorch-based open-source framework that provides methods for improving the weakly annotated data and allows researchers to efficiently develop and compare their own methods.

Knodle (Knowledge-supervised Deep Learning Framework) - a new framework for weak supervision with neural networks. It provides a modularization for se

93 Nov 06, 2022