Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

Overview

C-CNN: Contourlet Convolutional Neural Networks

This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch, Numpy and Cython.

For texture classification, spectral analysis is traditionally employed in the frequency domain. Recent studies have shown the potential of convolutional neural networks (CNNs) when dealing with the texture classification task in the spatial domain. This network combines both approaches in different domains for more abundant information and proposed a novel network architecture named contourlet CNN (C-CNN). This network aims to learn sparse and effective feature representations for images. First, the contourlet transform is applied to get the spectral features from an image. Second, the spatial-spectral feature fusion strategy is designed to incorporate the spectral features into CNN architecture. Third, the statistical features are integrated into the network by the statistical feature fusion. Finally, the results are obtained by classifying the fusion features.

Installation

The code is tested in a Conda environment setup. First, install PyTorch, torchvision and the appropriate version of cudatoolkit. The code is tested with torch=1.9.1 and torchvision=0.10.1.

conda install pytorch torchvision cudatoolkit=11.1 -c pytorch -c conda-forge

Next, install the other supporting packages from the requirements.txt provided.

pip install -r requirements.txt

You should be able to run the notebooks provided after the setup is done.

Code and Notebooks

In this repo, two Jupyter notebooks is provided.

  1. 01_Visualize_Contourlet_Transform.ipynb - Visualize the contourlet transform output of a sample image, as described in the paper.

  1. 02_Training_DEMO.ipynb - A minimal example of training a Contourlet-CNN on the CIFAR-10 dataset.

The pycontourlet folder contains a modified version of the pycontourlet package from mazayux. Unlike the original, this version works on Python 3.

The contourlet_cnn.py contains the class definition for the Contourlet-CNN network.

Network Variants

The variants of the Contourlet-CNN model. From left to right, each variant is an incremental version of the previous variant, as such in an abalation study in the original paper.

  • "origin" - The 'origin' splices the elongated decomposed images into its corresponding sizes since the contourlet has elongated supports. No SSF features is concatenated to the features in FC2 layer.
  • "SSFF" - Instead of splicing, the 'SSFF' (spatial–spectral feature fusion) via contourlet directly resize the elongated decomposed images into its corresponding sizes. No SSF features is concatenated to the features in FC2 layer.
  • "SSF" - In addition to 'SSFF', the 'SFF' (statistical feature fusion) that denotes the additional texture features of decomposed images, are concatenated to the features in FC2 layer. The mean and variance of each subbands are chosen as the texture features of decomposed images.

In the original paper, the images are converted to grayscale image before feeding into the network. This implementation supports both grayscale images and images with full RGB channels. By setting the spec_type parameter, For full RGB channels, use "all", while to use grayscale images, use "avg".

Examples:

# Uses all RGB channel for contourlet transform, the output are resized, and the statistical
# features are concatenated to the FC layer. This is the recommended variant.
model = ContourletCNN(input_dim=(3, 224, 224), num_classes=10, variant="SSF", spec_type="all")

# Uses only the grayscale channel for contourlet transform, the output are resized, and the 
# statistical features are concatenated to the FC layer.
model = ContourletCNN(input_dim=(3, 224, 224), num_classes=10, variant="SSF", spec_type="avg")

# Uses all RGB channel for contourlet transform, the output are spliced
model = ContourletCNN(input_dim=(3, 224, 224), num_classes=10, variant="origin", spec_type="all")

# Uses all RGB channel for contourlet transform, the output are resized
model = ContourletCNN(input_dim=(3, 224, 224), num_classes=10, variant="SSSF", spec_type="all")
Owner
Goh Kun Shun (KHUN)
Computer Science Major Specializing in Data Science, MMU, Cyberjaya. Currently working as a machine learning engineer,
Goh Kun Shun (KHUN)
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 114 Jan 06, 2023
A curated list of awesome Deep Learning tutorials, projects and communities.

Awesome Deep Learning Table of Contents Books Courses Videos and Lectures Papers Tutorials Researchers Websites Datasets Conferences Frameworks Tools

Christos 20k Jan 05, 2023
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Martin Li 85 Dec 22, 2022
This repo implements a 3D segmentation task for an airport baggage dataset.

3D CT Scan Segmentation With Occupancy Network This repo implements a 3D superresolution segmentation task for an airport baggage dataset. Our final p

Christoph Reich 2 Mar 28, 2022
DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

OpenDILab 185 Dec 29, 2022
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction".

TGIN Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction". Files in the folder dataset/ electr

Alibaba 21 Dec 21, 2022
RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth, in ICCV 2021 (oral)

RINDNet RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth Mengyang Pu, Yaping Huang, Qingji Guan and Haibin Lin

Mengyang Pu 75 Dec 15, 2022
Deep learning model, heat map, data prepo

deep learning model, heat map, data prepo

Pamela Dekas 1 Jan 14, 2022
Adversarial vulnerability of powerful near out-of-distribution detection

Adversarial vulnerability of powerful near out-of-distribution detection by Stanislav Fort In this repository we're collecting replications for the ke

Stanislav Fort 9 Aug 30, 2022
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Kaiqiang Song 4 Apr 03, 2022
Simple PyTorch hierarchical models.

A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.

Rajiv Sarvepalli 5 Mar 06, 2022
Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech"

GradTTS Unofficial Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech" (arxiv) About this repo This is an unoffic

HeyangXue1997 103 Dec 23, 2022
Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.

Skeleton Merger Skeleton Merger, an Unsupervised Aligned Keypoint Detector. The paper is available at https://arxiv.org/abs/2103.10814. A map of the r

北海若 48 Nov 14, 2022
This project aims to segment 4 common retinal lesions from Fundus Images.

This project aims to segment 4 common retinal lesions from Fundus Images.

Husam Nujaim 1 Oct 10, 2021
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A

Benedek Rozemberczki 697 Dec 27, 2022
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
The official github repository for Towards Continual Knowledge Learning of Language Models

Towards Continual Knowledge Learning of Language Models This is the official github repository for Towards Continual Knowledge Learning of Language Mo

Joel Jang | 장요엘 65 Jan 07, 2023
TianyuQi 10 Dec 11, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022