Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

Overview

C-CNN: Contourlet Convolutional Neural Networks

This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch, Numpy and Cython.

For texture classification, spectral analysis is traditionally employed in the frequency domain. Recent studies have shown the potential of convolutional neural networks (CNNs) when dealing with the texture classification task in the spatial domain. This network combines both approaches in different domains for more abundant information and proposed a novel network architecture named contourlet CNN (C-CNN). This network aims to learn sparse and effective feature representations for images. First, the contourlet transform is applied to get the spectral features from an image. Second, the spatial-spectral feature fusion strategy is designed to incorporate the spectral features into CNN architecture. Third, the statistical features are integrated into the network by the statistical feature fusion. Finally, the results are obtained by classifying the fusion features.

Installation

The code is tested in a Conda environment setup. First, install PyTorch, torchvision and the appropriate version of cudatoolkit. The code is tested with torch=1.9.1 and torchvision=0.10.1.

conda install pytorch torchvision cudatoolkit=11.1 -c pytorch -c conda-forge

Next, install the other supporting packages from the requirements.txt provided.

pip install -r requirements.txt

You should be able to run the notebooks provided after the setup is done.

Code and Notebooks

In this repo, two Jupyter notebooks is provided.

  1. 01_Visualize_Contourlet_Transform.ipynb - Visualize the contourlet transform output of a sample image, as described in the paper.

  1. 02_Training_DEMO.ipynb - A minimal example of training a Contourlet-CNN on the CIFAR-10 dataset.

The pycontourlet folder contains a modified version of the pycontourlet package from mazayux. Unlike the original, this version works on Python 3.

The contourlet_cnn.py contains the class definition for the Contourlet-CNN network.

Network Variants

The variants of the Contourlet-CNN model. From left to right, each variant is an incremental version of the previous variant, as such in an abalation study in the original paper.

  • "origin" - The 'origin' splices the elongated decomposed images into its corresponding sizes since the contourlet has elongated supports. No SSF features is concatenated to the features in FC2 layer.
  • "SSFF" - Instead of splicing, the 'SSFF' (spatial–spectral feature fusion) via contourlet directly resize the elongated decomposed images into its corresponding sizes. No SSF features is concatenated to the features in FC2 layer.
  • "SSF" - In addition to 'SSFF', the 'SFF' (statistical feature fusion) that denotes the additional texture features of decomposed images, are concatenated to the features in FC2 layer. The mean and variance of each subbands are chosen as the texture features of decomposed images.

In the original paper, the images are converted to grayscale image before feeding into the network. This implementation supports both grayscale images and images with full RGB channels. By setting the spec_type parameter, For full RGB channels, use "all", while to use grayscale images, use "avg".

Examples:

# Uses all RGB channel for contourlet transform, the output are resized, and the statistical
# features are concatenated to the FC layer. This is the recommended variant.
model = ContourletCNN(input_dim=(3, 224, 224), num_classes=10, variant="SSF", spec_type="all")

# Uses only the grayscale channel for contourlet transform, the output are resized, and the 
# statistical features are concatenated to the FC layer.
model = ContourletCNN(input_dim=(3, 224, 224), num_classes=10, variant="SSF", spec_type="avg")

# Uses all RGB channel for contourlet transform, the output are spliced
model = ContourletCNN(input_dim=(3, 224, 224), num_classes=10, variant="origin", spec_type="all")

# Uses all RGB channel for contourlet transform, the output are resized
model = ContourletCNN(input_dim=(3, 224, 224), num_classes=10, variant="SSSF", spec_type="all")
Owner
Goh Kun Shun (KHUN)
Computer Science Major Specializing in Data Science, MMU, Cyberjaya. Currently working as a machine learning engineer,
Goh Kun Shun (KHUN)
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
Hypersearch weight debugging and losses tutorial

tutorial Activate tensorboard option Running TensorBoard remotely When working on a remote server, you can use SSH tunneling to forward the port of th

1 Dec 11, 2021
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Collyn O'Kane 37 Dec 22, 2022
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Multi-Objective Loss Balancing for Physics-Informed Deep Learning Code for ReLoBRaLo. Abstract Physics Informed Neural Networks (PINN) are algorithms

Rafael Bischof 16 Dec 12, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Features"

EDM-subgenre-classifier This repository contains the code for "Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Fea

11 Dec 20, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
Face and Body Tracking for VRM 3D models on the web.

Kalidoface 3D - Face and Full-Body tracking for Vtubing on the web! A sequal to Kalidoface which supports Live2D avatars, Kalidoface 3D is a web app t

Rich 257 Jan 02, 2023
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models Code accompanying CVPR'20 paper of the same title. Paper lin

Alex Damian 7k Dec 30, 2022
2 Jul 19, 2022
Joint parameterization and fitting of stroke clusters

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Al

Dave Pagurek 44 Dec 01, 2022
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
Direct application of DALLE-2 to video synthesis, using factored space-time Unet and Transformers

DALLE2 Video (wip) ** only to be built after DALLE2 image is done and replicated, and the importance of the prior network is validated ** Direct appli

Phil Wang 105 May 15, 2022
利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

写在前面 利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。 默认你已经完成了

Helium 6 Jul 28, 2022
Omniverse sample scripts - A guide for developing with Python scripts on NVIDIA Ominverse

Omniverse sample scripts ここでは、NVIDIA Omniverse ( https://www.nvidia.com/ja-jp/om

ft-lab (Yutaka Yoshisaka) 37 Nov 17, 2022
PointPillars inference with TensorRT

A project demonstrating how to use CUDA-PointPillars to deal with cloud points data from lidar.

NVIDIA AI IOT 315 Dec 31, 2022
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is devel

33 Nov 11, 2022
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Ta-Lun Yen 10 May 17, 2022