Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Overview

Summary

This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zhang, Yiran Shen*, Bowen Du, Guangrong Zhao, Lizhen Cui Cui Lizhen, Hongkai Wen.

The paper can be found here.

Introduction

In this paper, We propose new event-based gait recognition approaches basing on two different representations of the event-stream, i.e., graph and image-like representations, and use Graph-based Convolutional Network (GCN) and Convolutional Neural Networks (CNN) respectively to recognize gait from the event-streams. The two approaches are termed as EV-Gait-3DGraph and EV-Gait-IMG. To evaluate the performance of the proposed approaches, we collect two event-based gait datasets, one from real-world experiments and the other by converting the publicly available RGB gait recognition benchmark CASIA-B.

If you use any of this code or data, please cite the following publication:

@inproceedings{wang2019ev,
  title={EV-gait: Event-based robust gait recognition using dynamic vision sensors},
  author={Wang, Yanxiang and Du, Bowen and Shen, Yiran and Wu, Kai and Zhao, Guangrong and Sun, Jianguo and Wen, Hongkai},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={6358--6367},
  year={2019}
}
@article{wang2021event,
 title={Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks},
    author={Wang, Yanxiang and Zhang, Xian and Shen, Yiran and Du, Bowen and Zhao,     Guangrong and Lizhen, Lizhen Cui Cui and Wen, Hongkai},
   journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
    year={2021},
   publisher={IEEE}
   }

Requirements

  • Python 3.x
  • Conda
  • cuda
  • PyTorch
  • numpy
  • scipy
  • PyTorch Geometric
  • TensorFlow
  • Matlab (with Computer Vision Toolbox and Image Processing Toolbox for nonuniform grid downsample)

Installation

Data

We use both data collected in real-world experiments(called DVS128-Gait) and converted from publicly available RGB gait databases(called EV-CASIA-B). Here we offer the code and data for the DVS128-Gait.

DVS128-Gait DATASET

we use a DVS128 Dynamic Vision Sensor from iniVation operating at 128*128 pixel resolution.

we collect two dataset: DVS128-Gait-Day and DVS128-Gait-Night, which were collected under day and night lighting condition respectively.

For each lighting condition, we recruited 20 volunteers to contribute their data in two experiment sessions spanning over a few days. In each session, the participants were asked to repeat walking in front of the DVS128 sensor for 100 times.

Run EV-Gait-3DGraph

  • download DVS128-Gait-Day dataset, you will get DVS128-Gait-Day folder which contains train and test data, place DVS128-Gait-Day folder to the data/ folder.

  • event downsample using matlab:

    1. open Matlab
    2. go to matlab_downsample
    3. run main.m. This will generate the data/DVS128-Gait-Day/downsample folder which contains the non-uniform octreeGrid filtering data .
  • or directly download the downsampled data from this link:

    https://pan.baidu.com/s/1OKKvrhid929DakSxsjT7XA , extraction code: ceb1

    Then unzip it to the data/DVS128-Gait-Day/downsample folder.

  • generate graph representation for event, the graph data will be generated in data/DVS128-Gait-Day/graph folder:

    cd generate_graph
    python mat2graph.py
    
  • Download the pretrained model to the trained_model folder:

    https://pan.baidu.com/s/1X7eytUDWAtKS4bk0rjbs6g , extraction code: b7z7

  • run EV-Gait-3DGraph model with the pretrained model:

    cd EV-Gait-3DGraph
    python test_3d_graph.py --model_name EV_Gait_3DGraph.pkl
    

    The parameter--model_name refers to the downloaded pretrained model name.

  • train EV-Gait-3DGraph from scratch:

    cd EV-Gait-3DGraph
    nohup python -u train_3d_graph.py --epoch 110 --cuda 0 > train_3d_graph.log 2>&1 &
    

    the traning log would be created at log/train.log.

    parameters of train_3d_graph.py

    • --batch_size: default 16
    • --epoch: number of iterations, default 150
    • --cuda: specify the cuda device to use, default 0

Run EV-Gait-IMG

  • generate the image-like representation

    cd EV-Gait-IMG
    python make_hdf5.py
    
  • Download the pretrained model to the trained_model folder:

    https://pan.baidu.com/s/1xNbYUYYVPTwwjXeQABjmUw , extraction code: g5k2

    we provide four well trained model for four image-like representations presented in the paper.

    • EV_Gait_IMG_four_channel.pkl
    • EV_Gait_IMG_counts_only_two_channel.pkl
    • EV_Gait_IMG_time_only_two_channel.pkl
    • EV_Gait_IMG_counts_and_time_two_channel.pkl
  • run EV-Gait-IMG model with the pretrained model:

    We provide four options for --img_type to correctly test the corresponding image-like representation

    • four_channel : All four channels are considered, which is the original setup of the image-like representation

      python test_gait_cnn.py --img_type four_channel --model_name EV_Gait_IMG_four_channel.pkl
      
    • counts_only_two_channel : Only the two channels accommodating the counts of positive or negative events are kept

      python test_gait_cnn.py --img_type counts_only_two_channel --model_name EV_Gait_IMG_counts_only_two_channel.pkl
      
    • time_only_two_channel : Only the two channels holding temporal characteristics are kept

      python test_gait_cnn.py --img_type time_only_two_channel --model_name EV_Gait_IMG_time_only_two_channel.pkl
      
    • counts_and_time_two_channel : The polarity of the events is removed

      python test_gait_cnn.py --img_type counts_and_time_two_channel --model_name EV_Gait_IMG_counts_and_time_two_channel.pkl
      

    The parameter --model_name refers to the downloaded pretrained model name.

  • train EV-Gait-IMG from scratch:

    nohup python -u train_gait_cnn.py --img_type counts_only_two_channel --epoch 50 --cuda 1 --batch_size 128 > counts_only_two_channel.log 2>&1 &
    

    parameters of test_gait_cnn.py

    • --batch_size: default 128
    • --epoch: number of iterations, default 50
    • --cuda: specify the cuda device to use, default 0
    • --img_type: specify the type of image-like representation to train the cnn. Four options are provided according to the paper.
      • four_channel : All four channels are considered, which is the original setup of the image-like representation
      • counts_only_two_channel : Only the two channels accommodating the counts of positive or negative events are kept.
      • time_only_two_channel : Only the two channels holding temporal characteristics are kept.
      • counts_and_time_two_channel : The polarity of the events is removed.
Owner
zhangxian
Student
zhangxian
The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer"

Shuffle Transformer The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer" Introduction Very recently, window-

87 Nov 29, 2022
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022
PyTorch reimplementation of the paper Involution: Inverting the Inherence of Convolution for Visual Recognition [CVPR 2021].

Involution: Inverting the Inherence of Convolution for Visual Recognition Unofficial PyTorch reimplementation of the paper Involution: Inverting the I

Christoph Reich 100 Dec 01, 2022
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
Research code of ICCV 2021 paper "Mesh Graphormer"

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
学习 python3 以来写的一些垃圾玩具……

和东哥做兄弟 Author: chiupam 版权 未经本人同意,仓库内所有资源文件,禁止任何公众号、自媒体、开发者进行任何形式的转载、发布、搬运。 声明 这不是一个开源项目,只是把 GitHub 当作一个代码的存储空间,本项目不接受任何开源要求。 仅用于学习研究,禁止用于商业用途,不能保证其合法性

Chiupam 67 Mar 26, 2022
Educational 2D SLAM implementation based on ICP and Pose Graph

slam-playground Educational 2D SLAM implementation based on ICP and Pose Graph How to use: Use keyboard arrow keys to navigate robot. Press 'r' to vie

Kirill 19 Dec 17, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
Differentiable Annealed Importance Sampling (DAIS)

Differentiable Annealed Importance Sampling (DAIS) This repository contains the code to reproduce the DAIS results from the paper Differentiable Annea

Guodong Zhang 6 Dec 26, 2021
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
SuRE Evaluation: A Supplementary Material

SuRE Evaluation: A Supplementary Material This repository contains supplementary material regarding the evaluations presented in the paper Visual Expl

NYU Visualization Lab 0 Dec 14, 2021
ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation

ST++ This is the official PyTorch implementation of our paper: ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation. Lihe Ya

Lihe Yang 147 Jan 03, 2023
A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge This is a platform for intelligent agent learning based on a 3D open-world FPS game develope

46 Nov 24, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
A Pytorch loader for MVTecAD dataset.

MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The

Jiyuan 1 Dec 27, 2021
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization This repository contains the code for the BBI optimizer, introduced in the p

G. Bruno De Luca 5 Sep 06, 2022
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022
3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

3rd Place Solution of Traffic4Cast 2021 Core Challenge This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge. Paper Our so

7 Jul 25, 2022