An Open-Source Tool for Automatic Disease Diagnosis..

Overview

OpenMedicalChatbox

An Open-Source Package for Automatic Disease Diagnosis.

Overview

Due to the lack of open source for existing RL-base automated diagnosis methods. It's hard to make a comparison for different methods. OpenMedicalChatbox integrates several current diagnostic methods and datasets.

Dataset

At here, we show all the mentioned datasets in existing medical methods, including MZ-4, Dxy, MZ-10 and a simulated dataset based on Symcat. In goal.set in their folders, explicit symptoms, implicit symptoms and diagnosis given by doctors are recorded for each sample. Also, we provide the corresponding tools to extend them for each methods.

Here is the overview of datasets.

Name # of user goal # of diseases Ave. # of im. sym # of sym.
MZ-4 1,733 4 5.46 230
MZ-10 3,745 10 5.28 318
Dxy 527 5 1.67 41
SymCat-SD-90 30,000 90 2.60 266

Methods

Besides, we reproduce several mainstream models for comparison. For further information, you can refer to the paper.

  1. Flat-DQN: This is the baseline DQN agent, which has one layer policy and an action space including both symptoms and diseases.
  2. HRL-pretrained: This is a hierarchical model. The low level policy is pre-trained first and then the high level policy is trained. Besides, there is no disease classifier and the diagnosis is made by workers.
  3. REFUEL: This is a reinforcement learning method with reward shaping and feature rebuilding. It uses a branch to reconstruct the symptom vector to guide the policy gradient.
  4. KR-DS: This is an improved method based on Flat-DQN. It integrates a relational refinement branch and a knowledge-routed graph to strengthen the relationship between disease and symptoms. Here we adjust the code from fantasySE.
  5. GAMP: This is a GAN-based policy gradient network. It uses the GAN network to avoid generating randomized trials of symptom, and add mutual information to encourage the model to select the most discriminative symptoms.
  6. HRL: This is a new hierarchical policy we purposed for diagnosis. The high level policy consists of a master model that is responsible for triggering a low level model, the low level policy consists of several symptom checkers and a disease classifier. Also, we try not to divide symptoms into different group (Denoted as HRL (w/o grouped)) to demonstrate the strength of two-level structure and remove the separate disease discriminator (Denoted as HRL (w/o discriminator)) to show the effect of disease grouping in symptom information extraction.

Installation

  1. Install the packages
pip install OpenMedicalChatBox

or Cloning this repo

git clone https://github.com/Guardianzc/OpenMedicalChatBox.git
cd OpenMedicalChatBox
python setup.py install

After installation, you can try running demo.py to check if OpenMedicalChatBox works well

python demo.py
  1. Redirect the parameter file0 to the dataset needed. Note that if you use the KR-DS model, please redirect to "dataset_dxy" folder, and HRL dataset use the "HRL" folder.
  2. Tune the parameter as you need.
  3. Run the file or use the code below

Examples

The following code shows how to use OpenMedicalChatBox to apply different diagnosis method on datasets.

import OpenMedicalChatBox as OMCB
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)

HRL_test = OMCB.HRL(dataset_path = '.\Data\mz4\HRL\\', model_save_path = './simulate', groups = 2, model_load_path = './simulate', cuda_idx = 1, train_mode = True)
HRL_test.run()

KRDS_test = OMCB.KRDS(dataset_path = '.\Data\mz4\dataset_dxy\\', model_save_path = './simulate', model_load_path = './simulate', cuda_idx = 1, train_mode = True)
KRDS_test.run()


Flat_DQN_test = OMCB.Flat_DQN(dataset_path = '.\Data\mz4\\', model_save_path = './simulate',  model_load_path = './simulate', cuda_idx = 1, train_mode = True)
Flat_DQN_test.run()


GAMP_test = OMCB.GAMP(dataset_path = '.\Data\mz4\\', model_save_path = './simulate', model_load_path = './simulate', cuda_idx = 1, train_mode = True)
GAMP_test.run()

REFUEL_test = OMCB.REFUEL(dataset_path = '.\Data\mz4\\', model_save_path = './simulate', model_load_path = './simulate', cuda_idx = 0, train_mode = True)
REFUEL_test.run()

The detail experimental parameters are shown in here.

Experiment

We show the accuracy for disease diagnosis (Acc.), recall for symptom recovery (M.R.) and the average turns in interaction (Avg. T).

  • In real world dataset
Dxy MZ-4 MZ-10
Model Acc. M.R. Avg.T Acc. M.R. Avg.T Acc. M.R. Avg.T
Flat-DQN 0.731 0.110 1.96 0.681 0.062 1.27 0.408 0.047 9.75
KR-DS 0.740 0.399 5.65 0.678 0.177 4.61 0.485 0.279 5.95
REFUEL 0.721 0.186 3.11 0.716 0.215 5.01 0.505 0.262 5.50
GAMP 0.731 0.268 2.84 0.644 0.107 2.93 0.500 0.067 1.78
Classifier Lower Bound 0.682 -- -- 0.671 -- -- 0.532 -- --
HRL (w/o grouped) 0.731 0.297 6.61 0.689 0.004 2.25 0.540 0.114 4.59
HRL (w/o discriminator) -- 0.512 8.42 -- 0.233 5.71 -- 0.330 8.75
HRL 0.779 0.424 8.61 0.735 0.229 5.08 0.556 0.295 6.99
Classifier Upper Bound 0.846 -- -- 0.755 -- -- 0.612 -- --
  • In synthetic dataset
Model Acc. M.R. Avg.T
Flat-DQN 0.343 0.023 1.23
KR-DS 0.357 0.388 6.24
REFUEL 0.347 0.161 4.56
GAMP 0.267 0.077 1.36
Classifier Lower Bound 0.308 -- --
HRL-pretrained 0.452 -- 3.42
HRL 0.504 0.495 6.48
Classifier Upper Bound 0.781 -- --

Reference

Citation

Please cite our paper if you use toolkit

@article{liao2020task,
  title={Task-oriented dialogue system for automatic disease diagnosis via hierarchical reinforcement learning},
  author={Liao, Kangenbei and Liu, Qianlong and Wei, Zhongyu and Peng, Baolin and Chen, Qin and Sun, Weijian and Huang, Xuanjing},
  journal={arXiv preprint arXiv:2004.14254},
  year={2020}
}
Owner
School of Data Science, Fudan University
An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge.

Bottom-Up and Top-Down Attention for Visual Question Answering An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge. The

Hengyuan Hu 731 Jan 03, 2023
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF shows significant improvements over baseline fine-tuning without data filtration.

Information Gain Filtration Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF sho

4 Jul 28, 2022
Transfer Learning Shootout for PyTorch's model zoo (torchvision)

pytorch-retraining Transfer Learning shootout for PyTorch's model zoo (torchvision). Load any pretrained model with custom final layer (num_classes) f

Alexander Hirner 169 Jun 29, 2022
Simulation code and tutorial for BBHnet training data

Simulation Dataset for BBHnet NOTE: OLD README, UPDATE IN PROGRESS We generate simulation dataset to train BBHnet, our deep learning framework for det

0 May 31, 2022
This is the official code release for the paper Shape and Material Capture at Home

This is the official code release for the paper Shape and Material Capture at Home. The code enables you to reconstruct a 3D mesh and Cook-Torrance BRDF from one or more images captured with a flashl

89 Dec 10, 2022
A robotic arm that mimics hand movement through MediaPipe tracking.

La-Z-Arm A robotic arm that mimics hand movement through MediaPipe tracking. Hardware NVidia Jetson Nano Sparkfun Pi Servo Shield Micro Servos Webcam

Alfred 1 Jun 05, 2022
S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)

S2-BNN (Self-supervised Binary Neural Networks Using Distillation Loss) This is the official pytorch implementation of our paper: "S2-BNN: Bridging th

Zhiqiang Shen 52 Dec 24, 2022
pytorch implementation of openpose including Hand and Body Pose Estimation.

pytorch-openpose pytorch implementation of openpose including Body and Hand Pose Estimation, and the pytorch model is directly converted from openpose

Hzzone 1.4k Jan 07, 2023
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

VOS This is the source code accompanying the paper VOS: Learning What You Don’t

248 Dec 25, 2022
GANSketchingJittor - Implementation of Sketch Your Own GAN in Jittor

GANSketching in Jittor Implementation of (Sketch Your Own GAN) in Jittor(计图). Or

Bernard Tan 10 Jul 02, 2022
Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Init Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger. 本项目基于 https://github.com/jaywalnut310/vits https://github.com/S

AmorTX 107 Dec 23, 2022
🍷 Gracefully claim weekly free games and monthly content from Epic Store.

EPIC 免费人 🚀 优雅地领取 Epic 免费游戏 Introduction 👋 Epic AwesomeGamer 帮助玩家优雅地领取 Epic 免费游戏。 使用 「Epic免费人」可以实现如下需求: get:搬空游戏商店,获取所有常驻免费游戏与免费附加内容; claim:领取周免游戏及其免

571 Dec 28, 2022
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).

Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D

Congcong Wang 0 Jul 14, 2021
Software Platform for solving and manipulating multiparametric programs in Python

PPOPT Python Parametric OPtimization Toolbox (PPOPT) is a software platform for solving and manipulating multiparametric programs in Python. This pack

10 Sep 13, 2022
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms

LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont

Chenglin Yang 20 Dec 31, 2021
DeepOBS: A Deep Learning Optimizer Benchmark Suite

DeepOBS - A Deep Learning Optimizer Benchmark Suite DeepOBS is a benchmarking suite that drastically simplifies, automates and improves the evaluation

Aaron Bahde 7 May 12, 2020
Tutorial: Introduction to Graph Machine Learning, with Jupyter notebooks

GraphMLTutorialNLDL22 Tutorial NLDL22: Introduction to Graph Machine Learning, with Jupyter notebooks This tutorial takes place during the conference

UiT Machine Learning Group 3 Jan 10, 2022
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022