An Open-Source Tool for Automatic Disease Diagnosis..

Overview

OpenMedicalChatbox

An Open-Source Package for Automatic Disease Diagnosis.

Overview

Due to the lack of open source for existing RL-base automated diagnosis methods. It's hard to make a comparison for different methods. OpenMedicalChatbox integrates several current diagnostic methods and datasets.

Dataset

At here, we show all the mentioned datasets in existing medical methods, including MZ-4, Dxy, MZ-10 and a simulated dataset based on Symcat. In goal.set in their folders, explicit symptoms, implicit symptoms and diagnosis given by doctors are recorded for each sample. Also, we provide the corresponding tools to extend them for each methods.

Here is the overview of datasets.

Name # of user goal # of diseases Ave. # of im. sym # of sym.
MZ-4 1,733 4 5.46 230
MZ-10 3,745 10 5.28 318
Dxy 527 5 1.67 41
SymCat-SD-90 30,000 90 2.60 266

Methods

Besides, we reproduce several mainstream models for comparison. For further information, you can refer to the paper.

  1. Flat-DQN: This is the baseline DQN agent, which has one layer policy and an action space including both symptoms and diseases.
  2. HRL-pretrained: This is a hierarchical model. The low level policy is pre-trained first and then the high level policy is trained. Besides, there is no disease classifier and the diagnosis is made by workers.
  3. REFUEL: This is a reinforcement learning method with reward shaping and feature rebuilding. It uses a branch to reconstruct the symptom vector to guide the policy gradient.
  4. KR-DS: This is an improved method based on Flat-DQN. It integrates a relational refinement branch and a knowledge-routed graph to strengthen the relationship between disease and symptoms. Here we adjust the code from fantasySE.
  5. GAMP: This is a GAN-based policy gradient network. It uses the GAN network to avoid generating randomized trials of symptom, and add mutual information to encourage the model to select the most discriminative symptoms.
  6. HRL: This is a new hierarchical policy we purposed for diagnosis. The high level policy consists of a master model that is responsible for triggering a low level model, the low level policy consists of several symptom checkers and a disease classifier. Also, we try not to divide symptoms into different group (Denoted as HRL (w/o grouped)) to demonstrate the strength of two-level structure and remove the separate disease discriminator (Denoted as HRL (w/o discriminator)) to show the effect of disease grouping in symptom information extraction.

Installation

  1. Install the packages
pip install OpenMedicalChatBox

or Cloning this repo

git clone https://github.com/Guardianzc/OpenMedicalChatBox.git
cd OpenMedicalChatBox
python setup.py install

After installation, you can try running demo.py to check if OpenMedicalChatBox works well

python demo.py
  1. Redirect the parameter file0 to the dataset needed. Note that if you use the KR-DS model, please redirect to "dataset_dxy" folder, and HRL dataset use the "HRL" folder.
  2. Tune the parameter as you need.
  3. Run the file or use the code below

Examples

The following code shows how to use OpenMedicalChatBox to apply different diagnosis method on datasets.

import OpenMedicalChatBox as OMCB
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)

HRL_test = OMCB.HRL(dataset_path = '.\Data\mz4\HRL\\', model_save_path = './simulate', groups = 2, model_load_path = './simulate', cuda_idx = 1, train_mode = True)
HRL_test.run()

KRDS_test = OMCB.KRDS(dataset_path = '.\Data\mz4\dataset_dxy\\', model_save_path = './simulate', model_load_path = './simulate', cuda_idx = 1, train_mode = True)
KRDS_test.run()


Flat_DQN_test = OMCB.Flat_DQN(dataset_path = '.\Data\mz4\\', model_save_path = './simulate',  model_load_path = './simulate', cuda_idx = 1, train_mode = True)
Flat_DQN_test.run()


GAMP_test = OMCB.GAMP(dataset_path = '.\Data\mz4\\', model_save_path = './simulate', model_load_path = './simulate', cuda_idx = 1, train_mode = True)
GAMP_test.run()

REFUEL_test = OMCB.REFUEL(dataset_path = '.\Data\mz4\\', model_save_path = './simulate', model_load_path = './simulate', cuda_idx = 0, train_mode = True)
REFUEL_test.run()

The detail experimental parameters are shown in here.

Experiment

We show the accuracy for disease diagnosis (Acc.), recall for symptom recovery (M.R.) and the average turns in interaction (Avg. T).

  • In real world dataset
Dxy MZ-4 MZ-10
Model Acc. M.R. Avg.T Acc. M.R. Avg.T Acc. M.R. Avg.T
Flat-DQN 0.731 0.110 1.96 0.681 0.062 1.27 0.408 0.047 9.75
KR-DS 0.740 0.399 5.65 0.678 0.177 4.61 0.485 0.279 5.95
REFUEL 0.721 0.186 3.11 0.716 0.215 5.01 0.505 0.262 5.50
GAMP 0.731 0.268 2.84 0.644 0.107 2.93 0.500 0.067 1.78
Classifier Lower Bound 0.682 -- -- 0.671 -- -- 0.532 -- --
HRL (w/o grouped) 0.731 0.297 6.61 0.689 0.004 2.25 0.540 0.114 4.59
HRL (w/o discriminator) -- 0.512 8.42 -- 0.233 5.71 -- 0.330 8.75
HRL 0.779 0.424 8.61 0.735 0.229 5.08 0.556 0.295 6.99
Classifier Upper Bound 0.846 -- -- 0.755 -- -- 0.612 -- --
  • In synthetic dataset
Model Acc. M.R. Avg.T
Flat-DQN 0.343 0.023 1.23
KR-DS 0.357 0.388 6.24
REFUEL 0.347 0.161 4.56
GAMP 0.267 0.077 1.36
Classifier Lower Bound 0.308 -- --
HRL-pretrained 0.452 -- 3.42
HRL 0.504 0.495 6.48
Classifier Upper Bound 0.781 -- --

Reference

Citation

Please cite our paper if you use toolkit

@article{liao2020task,
  title={Task-oriented dialogue system for automatic disease diagnosis via hierarchical reinforcement learning},
  author={Liao, Kangenbei and Liu, Qianlong and Wei, Zhongyu and Peng, Baolin and Chen, Qin and Sun, Weijian and Huang, Xuanjing},
  journal={arXiv preprint arXiv:2004.14254},
  year={2020}
}
Owner
School of Data Science, Fudan University
Implementing yolov4 target detection and tracking based on nao robot

Implementing yolov4 target detection and tracking based on nao robot

6 Apr 19, 2022
Development of IP code based on VIPs and AADM

Sparse Implicit Processes In this repository we include the two different versions of the SIP code developed for the article Sparse Implicit Processes

1 Aug 22, 2022
Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

DisUnknown: Distilling Unknown Factors for Disentanglement Learning See introduction on our project page Requirements PyTorch = 1.8.0 torch.linalg.ei

Sitao Xiang 24 May 16, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

STARS Laboratory 8 Sep 14, 2022
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Link to the paper: https://arxiv.org/pdf/2111.14271.pdf Contributors of this repo: Zhibo Zha

Zhibo (Darren) Zhang 18 Nov 01, 2022
SFD implement with pytorch

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector Description Meanwhile train hand

Jun Li 251 Dec 22, 2022
Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet) By Lele Chen , Ross K Maddox, Zhiyao Duan, Chenliang Xu. Unive

Lele Chen 218 Dec 27, 2022
[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting

[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting [Paper] [Project Website] [Google Colab] We propose a method for converting a

Virginia Tech Vision and Learning Lab 6.2k Jan 01, 2023
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8

FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego

Marcos V. Conde 19 Dec 06, 2022
一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM,xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)

CTR Algorithm 根据论文, 博客, 知乎等方式学习一些CTR相关的算法 理解原理并自己动手来实现一遍 pytorch & tf2.0 保持一颗学徒的心! Schedule Model pytorch tensorflow2.0 paper LR ✔️ ✔️ \ FM ✔️ ✔️ Fac

luo han 149 Dec 20, 2022
Software associated to AAAI paper "Planning with Biological Neurons and Synapses"

jBrain Software associated with the AAAI 2022 paper Francesco D'Amore, Daniel Mitropolsky, Pierluigi Crescenzi, Emanuele Natale, Christos H. Papadimit

Pierluigi Crescenzi 1 Apr 10, 2022
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

Sohil Shah 197 Nov 29, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Ibai Gorordo 19 Oct 22, 2022
Yolov3 pytorch implementation

YOLOV3 Pytorch实现 在bubbliiing大佬代码的基础上进行了修改,添加了部分注释。 预训练模型 预训练模型来源于bubbliiing。 链接:https://pan.baidu.com/s/1ncREw6Na9ycZptdxiVMApw 提取码:appk 训练自己的数据集 按照VO

4 Aug 27, 2022
A collection of IPython notebooks covering various topics.

ipython-notebooks This repo contains various IPython notebooks I've created to experiment with libraries and work through exercises, and explore subje

John Wittenauer 2.6k Jan 01, 2023
Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

120 Dec 15, 2022
An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset

关于实现的一点说明 山东大学 2020级 苏博南 www.subonan.com 文件说明 tools.py 这里面主要有两个函数: resize(a, lenb) 这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因

ぼっけなす 2 Aug 29, 2022
Time Delayed NN implemented in pytorch

Pytorch Time Delayed NN Time Delayed NN implemented in PyTorch. Usage kernels = [(1, 25), (2, 50), (3, 75), (4, 100), (5, 125), (6, 150)] tdnn = TDNN

Daniil Gavrilov 79 Aug 04, 2022
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023