An Open-Source Tool for Automatic Disease Diagnosis..

Overview

OpenMedicalChatbox

An Open-Source Package for Automatic Disease Diagnosis.

Overview

Due to the lack of open source for existing RL-base automated diagnosis methods. It's hard to make a comparison for different methods. OpenMedicalChatbox integrates several current diagnostic methods and datasets.

Dataset

At here, we show all the mentioned datasets in existing medical methods, including MZ-4, Dxy, MZ-10 and a simulated dataset based on Symcat. In goal.set in their folders, explicit symptoms, implicit symptoms and diagnosis given by doctors are recorded for each sample. Also, we provide the corresponding tools to extend them for each methods.

Here is the overview of datasets.

Name # of user goal # of diseases Ave. # of im. sym # of sym.
MZ-4 1,733 4 5.46 230
MZ-10 3,745 10 5.28 318
Dxy 527 5 1.67 41
SymCat-SD-90 30,000 90 2.60 266

Methods

Besides, we reproduce several mainstream models for comparison. For further information, you can refer to the paper.

  1. Flat-DQN: This is the baseline DQN agent, which has one layer policy and an action space including both symptoms and diseases.
  2. HRL-pretrained: This is a hierarchical model. The low level policy is pre-trained first and then the high level policy is trained. Besides, there is no disease classifier and the diagnosis is made by workers.
  3. REFUEL: This is a reinforcement learning method with reward shaping and feature rebuilding. It uses a branch to reconstruct the symptom vector to guide the policy gradient.
  4. KR-DS: This is an improved method based on Flat-DQN. It integrates a relational refinement branch and a knowledge-routed graph to strengthen the relationship between disease and symptoms. Here we adjust the code from fantasySE.
  5. GAMP: This is a GAN-based policy gradient network. It uses the GAN network to avoid generating randomized trials of symptom, and add mutual information to encourage the model to select the most discriminative symptoms.
  6. HRL: This is a new hierarchical policy we purposed for diagnosis. The high level policy consists of a master model that is responsible for triggering a low level model, the low level policy consists of several symptom checkers and a disease classifier. Also, we try not to divide symptoms into different group (Denoted as HRL (w/o grouped)) to demonstrate the strength of two-level structure and remove the separate disease discriminator (Denoted as HRL (w/o discriminator)) to show the effect of disease grouping in symptom information extraction.

Installation

  1. Install the packages
pip install OpenMedicalChatBox

or Cloning this repo

git clone https://github.com/Guardianzc/OpenMedicalChatBox.git
cd OpenMedicalChatBox
python setup.py install

After installation, you can try running demo.py to check if OpenMedicalChatBox works well

python demo.py
  1. Redirect the parameter file0 to the dataset needed. Note that if you use the KR-DS model, please redirect to "dataset_dxy" folder, and HRL dataset use the "HRL" folder.
  2. Tune the parameter as you need.
  3. Run the file or use the code below

Examples

The following code shows how to use OpenMedicalChatBox to apply different diagnosis method on datasets.

import OpenMedicalChatBox as OMCB
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)

HRL_test = OMCB.HRL(dataset_path = '.\Data\mz4\HRL\\', model_save_path = './simulate', groups = 2, model_load_path = './simulate', cuda_idx = 1, train_mode = True)
HRL_test.run()

KRDS_test = OMCB.KRDS(dataset_path = '.\Data\mz4\dataset_dxy\\', model_save_path = './simulate', model_load_path = './simulate', cuda_idx = 1, train_mode = True)
KRDS_test.run()


Flat_DQN_test = OMCB.Flat_DQN(dataset_path = '.\Data\mz4\\', model_save_path = './simulate',  model_load_path = './simulate', cuda_idx = 1, train_mode = True)
Flat_DQN_test.run()


GAMP_test = OMCB.GAMP(dataset_path = '.\Data\mz4\\', model_save_path = './simulate', model_load_path = './simulate', cuda_idx = 1, train_mode = True)
GAMP_test.run()

REFUEL_test = OMCB.REFUEL(dataset_path = '.\Data\mz4\\', model_save_path = './simulate', model_load_path = './simulate', cuda_idx = 0, train_mode = True)
REFUEL_test.run()

The detail experimental parameters are shown in here.

Experiment

We show the accuracy for disease diagnosis (Acc.), recall for symptom recovery (M.R.) and the average turns in interaction (Avg. T).

  • In real world dataset
Dxy MZ-4 MZ-10
Model Acc. M.R. Avg.T Acc. M.R. Avg.T Acc. M.R. Avg.T
Flat-DQN 0.731 0.110 1.96 0.681 0.062 1.27 0.408 0.047 9.75
KR-DS 0.740 0.399 5.65 0.678 0.177 4.61 0.485 0.279 5.95
REFUEL 0.721 0.186 3.11 0.716 0.215 5.01 0.505 0.262 5.50
GAMP 0.731 0.268 2.84 0.644 0.107 2.93 0.500 0.067 1.78
Classifier Lower Bound 0.682 -- -- 0.671 -- -- 0.532 -- --
HRL (w/o grouped) 0.731 0.297 6.61 0.689 0.004 2.25 0.540 0.114 4.59
HRL (w/o discriminator) -- 0.512 8.42 -- 0.233 5.71 -- 0.330 8.75
HRL 0.779 0.424 8.61 0.735 0.229 5.08 0.556 0.295 6.99
Classifier Upper Bound 0.846 -- -- 0.755 -- -- 0.612 -- --
  • In synthetic dataset
Model Acc. M.R. Avg.T
Flat-DQN 0.343 0.023 1.23
KR-DS 0.357 0.388 6.24
REFUEL 0.347 0.161 4.56
GAMP 0.267 0.077 1.36
Classifier Lower Bound 0.308 -- --
HRL-pretrained 0.452 -- 3.42
HRL 0.504 0.495 6.48
Classifier Upper Bound 0.781 -- --

Reference

Citation

Please cite our paper if you use toolkit

@article{liao2020task,
  title={Task-oriented dialogue system for automatic disease diagnosis via hierarchical reinforcement learning},
  author={Liao, Kangenbei and Liu, Qianlong and Wei, Zhongyu and Peng, Baolin and Chen, Qin and Sun, Weijian and Huang, Xuanjing},
  journal={arXiv preprint arXiv:2004.14254},
  year={2020}
}
Owner
School of Data Science, Fudan University
Exponential Graph is Provably Efficient for Decentralized Deep Training

Exponential Graph is Provably Efficient for Decentralized Deep Training This code repository is for the paper Exponential Graph is Provably Efficient

3 Apr 20, 2022
Learning embeddings for classification, retrieval and ranking.

StarSpace StarSpace is a general-purpose neural model for efficient learning of entity embeddings for solving a wide variety of problems: Learning wor

Facebook Research 3.8k Dec 22, 2022
3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks Introduction This repository contains the code and models for the follo

124 Jan 06, 2023
Federated Learning - Including common test models for federated learning, like CNN, Resnet18 and lstm, controlled by different parser

Federated_Learning 💻 This projest include common test models for federated lear

TianyuQi 10 Dec 11, 2022
CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer

CycleTransGAN-EVC CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer Demo emotion CycleTransGAN CycleTransGAN Cycle

24 Dec 15, 2022
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

CVMI Lab 228 Dec 25, 2022
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

DisUnknown: Distilling Unknown Factors for Disentanglement Learning See introduction on our project page Requirements PyTorch = 1.8.0 torch.linalg.ei

Sitao Xiang 24 May 16, 2022
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.

Artifact • Reproduce Bugs • Quick Start • Installation • Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s

12 Dec 29, 2022
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
Data for "Driving the Herd: Search Engines as Content Influencers" paper

herding_data Data for "Driving the Herd: Search Engines as Content Influencers" paper Dataset description The collection contains 2250 documents, 30 i

0 Aug 17, 2021
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region. This repository provides the codebase and dataset for our work WORD: Revisiting Or

Healthcare Intelligence Laboratory 71 Jan 07, 2023
Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)

MUC Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018) Performance Details for Accuracy: | Dataset

Yijun Su 3 Oct 09, 2022
《Fst Lerning of Temporl Action Proposl vi Dense Boundry Genertor》(AAAI 2020)

Update 2020.03.13: Release tensorflow-version and pytorch-version DBG complete code. 2019.11.12: Release tensorflow-version DBG inference code. 2019.1

Tencent 338 Dec 16, 2022
Framework for abstracting Amiga debuggers and access to AmigaOS libraries and devices.

Framework for abstracting Amiga debuggers. This project provides abstration to control an Amiga remotely using a debugger. The APIs are not yet stable

Roc Vallès 39 Nov 22, 2022
A new test set for ImageNet

ImageNetV2 The ImageNetV2 dataset contains new test data for the ImageNet benchmark. This repository provides associated code for assembling and worki

186 Dec 18, 2022
A simple Tensorflow based library for deep and/or denoising AutoEncoder.

libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st

Rajarshee Mitra 147 Nov 18, 2022
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces

This repository contains source code for the paper Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces a

9 Nov 21, 2022
Learning Correspondence from the Cycle-consistency of Time (CVPR 2019)

TimeCycle Code for Learning Correspondence from the Cycle-consistency of Time (CVPR 2019, Oral). The code is developed based on the PyTorch framework,

Xiaolong Wang 706 Nov 29, 2022