SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

Related tags

Deep LearningSCI-AIDE
Overview

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

Pretrained Models

In this work, we created synthetic tissue microscopy images using few-shot learning and developed a digital pathology pipeline called SCI-AIDE to improve diagnostic accuracy. Since rare cancers encompass a very large group of tumours, we used childhood cancer histopathology images to develop and test our system. Our computational experiments demonstrate that the synthetic images significantly enhances performance of various AI classifiers.

Example Results

Real and Synthetic Images

Dataset

In this study, we conducted experiments using histopathological whole slide images(WSIs) of five rare childhood cancer types and their sub-types, namely ependymoma (anaplastic, myxopapillary, subependymoma and no-subtype), medulloblastoma (anaplastic, desmoplastic and no-subtype), Wilms tumour, also known as nephroblastoma (epithelial, blastomatous, stromal, Wilms epithelial-stromal, epithelial-blastomatous and blastomatous-stromal), pilocytic astrocytoma and Ewing sarcoma.

Tumour histopathology WSIs are collected at Ege University, Turkey and Aperio AT2 scanner digitised the WSIs at 20× magnification. WSIs will be available publicly soon

Prerequisites

  • Linux (Tested on Red Hat Enterprise Linux 8.5)
  • NVIDIA GPU (Tested on Nvidia GeForce RTX 3090 Ti x 4 on local workstations, and Nvidia A100 GPUs on TRUBA
  • Python (3.9.7), matplotlib (3.4.3), numpy (1.21.2), opencv (4.5.3), openslide-python (1.1.1), openslides (3.4.1), pandas (1.3.3), pillow (8.3.2), PyTorch (1.9.0), scikit-learn (1.0), scipy (1.7.1), tensorboardx (2.4), torchvision (0.10.1).

Getting started

  • Clone this repo:
git clone https://github.com/ekurtulus/SCI-AIDE.git
cd SCI-AIDE
  • Install PyTorch 3.9 and other dependencies (e.g., PyTorch).

  • For pip users, please type the command pip install -r requirements.txt.

  • For Conda users, you can create a new Conda environment using conda env create -f environment.yml.

Synthetic Images Generation

  • Clone FastGAN repo:
git clone https://github.com/odegeasslbc/FastGAN-pytorch.git
cd FastGAN-pytorch
  • Train the FastGAN model:
python classifer.py --path $REAL_IMAGE_DIR --iter 100000 --batch_size 16
  • Inference the FastGAN model:
python eval.py --ckpt $CKPT_PATH --n_sample $NUMBERS_OF_SAMPLE
  • Train the SCI-AIDE model:
python train.py --datapath $DATAPATH_PATH --model $MODEL --savepath $SAVING_PATH --task $TRAINING_TASK

The list of other arguments is as follows:

  • --lr : Learning rate (default: 5e-5)

  • --opt : Optimizers ( "Adam", "SGD", "RMSprop", "AdamW" , default= "SGD")

  • --batch-size : Batch size (default: 32)

  • --halftensor : Mixed presicion acivaiton

  • --epochs : Numbers of epochs

  • --scheduler : Learning scheduler ( "cosine", "multiplicative" , default="cosine")

  • --augmentation : Augmentation selection ( "randaugment", "autoaugment", "augmix", "none", default= "randaugment" )

  • --memory : Data reading selection ( "none", "cached", default= "none" )

  • Evaluation the SCI-AIDE model:

python wsi_attention.py --datapath $DATAPATH_PATH --model $MODEL --model_weights $MODEL_WEIGHT --output $OUTPUT_PATH --name $NAME --num_classes $NUM_CLASSES

The list of other arguments is as follows:

  • --attention_level : ("pixel", "patch", default="patch)

  • --cam : CAM selection ( "GradCAM", "ScoreCAM", "GradCAMPlusPlus", "AblationCAM", "XGradCAM", "EigenCAM", "FullGrad", default="EigenCAM" )

  • Diagnosis WSI with the SCI-AIDE model:

python wsi_diagnosis.py --task $DIAGNOSIS_TASK --datapath $WSI_PATH --output $OUTPUT_PATH --config $CONFIG_FILE_PATH --name $NAME

The list of other arguments is as follows:

  • --overlap : Patches overlaping raito (default :0 )
  • --patch_size : WSI oatching size (default : 1024 )
  • --heatmap : Heatmap inference activation
  • --white_threshold : White pathch elimiantion ration (default :0.3)

Apply a pre-trained SCI-AIDE model and evaluate

For reproducability, you can download the pretrained models for each algorithm here.

Issues

  • Please report all issues on the public forum.

License

© This code is made available under the GPLv3 License and is available for non-commercial academic purposes.

Reference

If you find our work useful in your research or if you use parts of this code please consider citing our paper:


Acknowledgments

Our code is developed based on pytorch-image-models. We also thank pytorch-fid for FID computation, and FastGAN-pytorch for the PyTorch implementation of FastGAN used in our single-image translation setting.

You might also like...
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Tensorflow python implementation of
Tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos"

Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos This repository is the official tensorflow python implementation

UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

A two-stage U-Net for high-fidelity denoising of historical recordings
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs

DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High

Owner
Emirhan Kurtuluş
Emirhan Kurtuluş
PyTorch implementation of residual gated graph ConvNets, ICLR’18

Residual Gated Graph ConvNets April 24, 2018 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbress

Xavier Bresson 112 Aug 10, 2022
YolactEdge: Real-time Instance Segmentation on the Edge

YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7

Haotian Liu 1.1k Jan 06, 2023
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022
FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation

FCN_via_Keras FCN FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This

Kento Watanabe 48 Aug 30, 2022
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.

Jittor: a Just-in-time(JIT) deep learning framework Quickstart | Install | Tutorial | Chinese Jittor is a high-performance deep learning framework bas

2.7k Jan 03, 2023
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023
Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.

vid2vid Project | YouTube(short) | YouTube(full) | arXiv | Paper(full) Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic vid

NVIDIA Corporation 8.1k Jan 01, 2023
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)

Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA). Master's thesis documents. Bibliography, experiments and reports.

Erick Cobos 73 Dec 04, 2022
Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility ICCV2021

Vis2Mesh This is the offical repository of the paper: Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Lear

71 Dec 25, 2022
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022
The second project in Python course on FCC

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Denise T 1 Dec 13, 2021
🐤 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

🐤 Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

Rendi Chevi 156 Jan 09, 2023
Decorator for PyMC3

sampled Decorator for reusable models in PyMC3 Provides syntactic sugar for reusable models with PyMC3. This lets you separate creating a generative m

Colin 50 Oct 08, 2021
A curated list of awesome deep long-tailed learning resources.

A curated list of awesome deep long-tailed learning resources.

vanint 210 Dec 25, 2022
Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process

Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process, a complete algorithm library is esta

Fu Pengyou 50 Jan 07, 2023
Face Detection and Alignment using Multi-task Cascaded Convolutional Networks (MTCNN)

Face-Detection-with-MTCNN Face detection is a computer vision problem that involves finding faces in photos. It is a trivial problem for humans to sol

Chetan Hirapara 3 Oct 07, 2022