Constrained Language Models Yield Few-Shot Semantic Parsers

Overview

Constrained Language Models Yield Few-Shot Semantic Parsers

License: MIT

This repository contains tools and instructions for reproducing the experiments in the paper Constrained Language Models Yield Few-Shot Semantic Parsers (EMNLP 2021). If you use any source code or data included in this toolkit in your work, please cite the following paper.

@inproceedings{ConstrainedLMSemanticParser2021,
    title = "Constrained Language Models Yield Few-Shot Semantic Parsers",
    author = "Shin, Richard and Lin, Christopher H. and Thomson, Sam and Chen, Charles and Roy, Subhro and Platanios,  Emmanouil Antonios and Pauls, Adam and Klein, Dan and Eisner, Jason and Van Durme, Benjamin",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    year = "2021",
    publisher = "Association for Computational Linguistics",
}

Initial set-up

First, check that we are not unintentionally in a virtualenv. Run poetry env info; under "Virtualenv", it should show Path: NA. If it displays the path to an existing virtualenv, deactivate it, for example by running deactivate or conda deactivate.

Then run the following to set up the package:

cd semantic_parsing_with_constrained_lm
poetry config virtualenvs.in-project true --local
poetry env use 
   
    
poetry install
poetry shell

   

Before running any of the commands below, run poetry shell to activate the virtualenv where all packages have been installed. You can exit to deactivate the virtualenv.

To run any experiments with GPT-3, you will need to obtain an API key from OpenAI at https://beta.openai.com/ and set an environment variable.

export OPENAI_API_KEY=
   

   

The GPT-3 experiments use the "davinci" engine by default. You can use a different engine by setting the OPENAI_GPT3_ENGINE environment variable.

WARNING: If you run all of the experiments below using GPT-3, you will consume a very large number of tokens, and under the default pricing of OpenAI, incur a highly significant cost. If you would like to try a subset of the experiments instead:

  • Add --num-eval-examples N as an argument to the commands below to only run the evaluation on the first N examples.
  • Add --exp-names [EXPERIMENT NAME] where the experiment name is the portion of the path between logs/ and /results.json in the result locations below, to only run one experiment (corresponds to one cell in a results table of the paper).

Overnight

Preliminary setup

Download and pre-process the data for Overnight:

PIPX_HOME=.pipx PIPX_BIN_DIR=.venv/bin pipx install --python 
   
     codalab
python -m semantic_parsing_with_constrained_lm.domains.overnight.download_data

   

Fine-tuning BART models

export PRETRAINED_MODEL_DIR=facebook/bart-large
export TRAINED_MODEL_DIR=trained_models/

for domain in "basketball" "blocks" "calendar" "housing" "publications" "recipes" "restaurants" "socialnetwork"; do
    python -m semantic_parsing_with_constrained_lm.finetune.lm_finetune \
          --exp-names overnight_${domain}_utterance \
          --lr 1e-6 \
          --num-steps 20000 \
          --steps-per-save 20000 \
          --model-type BartV3 \
          --steps-per-decay 8 \
          --batch-size 32

    python -m semantic_parsing_with_constrained_lm.finetune.lm_finetune \
          --exp-names overnight_${domain}_meaningRepresentation \
          --lr 1e-5 \
          --num-steps 20000 \
          --steps-per-save 20000 \
          --model-type BartV3 \
          --steps-per-decay 8 \
          --batch-size 32
done 

Table 1

Run the following commands:

# GPT-3 Constrained Canonical
python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.overnight_emnlp_camera_ready \
--log-dir logs/ \
--model GPT3 \
--eval-split test-full

# BART
export PRETRAINED_MODEL_DIR=facebook/bart-large
export TRAINED_MODEL_DIR=trained_models/
python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.overnight_emnlp_camera_ready \
--log-dir logs/ \
--model Bart \
--eval-split test-full \
--exp-name-pattern 'overnight_Bart_test-full_.*_constrained_canonicalUtterance_train-200'

Then you can find the following results at the specified locations.

  • GPT-3 Constrained Canonical: logs/overnight_GPT3_test-full_${DOMAIN}_constrained_canonicalUtterance_train-200/results.json
  • BART Constrained Canonical: logs/overnight_Bart_test-full_${DOMAIN}_constrained_canonicalUtterance_train-200/results.json
  • All rows below the horizontal line: results were copied from the cited papers.

In the results.json files, each number in the table comes from "denotation/top1". ${DOMAIN} can be one of the following: calendar, basketball, blocks, housing, publications, recipes, restaurants, socialnetwork.

Table 2

Run the following commands:

# GPT-3 
python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.overnight_emnlp_camera_ready \
--log-dir logs/ \
--model GPT3 \
--eval-split test-subset \
--exp-name-pattern 'overnight_GPT3_test-subset_.*_(constrained|unconstrained-greedy)_.*_train-200' \
--exp-name-pattern 'overnight_GPT3_test-subset_.*_constrained_canonicalUtterance_train-20'

# BART
export PRETRAINED_MODEL_DIR=facebook/bart-large
export TRAINED_MODEL_DIR=trained_models/
python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.overnight_emnlp_camera_ready \
--log-dir logs/ \
--model Bart \
--eval-split test-full \
--exp-name-pattern 'overnight_Bart_test-full_.*_train-200'

Then you can find the following results at the specified locations:

  • GPT-3 Constrained Canonical: logs/overnight_GPT3_test-subset_${DOMAIN}_constrained_canonicalUtterance_train-200/results.json
  • GPT-3 Constrained Meaning: logs/overnight_GPT3_test-subset_${DOMAIN}_constrained_meaningRepresentation_train-200/results.json
  • GPT-3 Unconstrained Canonical: logs/overnight_GPT3_test-subset_${DOMAIN}_unconstrained_canonicalUtterance_train-200/results.json
  • GPT-3 Unconstrained Meaning: logs/overnight_GPT3_test-subset_${DOMAIN}_unconstrained_meaningRepresentation_train-200/results.json
  • GPT-3 Constrained Canonical, n = 20: logs/overnight_GPT3_test-subset_${DOMAIN}_constrained_canonicalUtterance_train-20/results.json
  • BART Constrained Canonical: logs/overnight_Bart_test-full_${DOMAIN}_constrained_canonicalUtterance_train-200/results.json
  • BART Constrained Meaning: logs/overnight_Bart_test-full_${DOMAIN}_constrained_meaningRepresentation_train-200/results.json
  • BART Unconstrained Canonical: logs/overnight_Bart_test-full_${DOMAIN}_unconstrained_canonicalUtterance_train-200/results.json
  • BART Unconstrained Meaning: logs/overnight_Bart_test-full_${DOMAIN}_unconstrained_meaningRepresentation_train-200/results.json

Figure 2

Run the following command:

python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.overnight_emnlp_camera_ready \
--log-dir logs/ \
--model GPT3 \
--eval-split test-subset \
--exp-name-pattern 'overnight_GPT3_test-subset_calendar_(constrained|unconstrained-beam)_.*_train-.*'

The data for the following series in the plot come from these files:

  • CC (200): logs/overnight_GPT3_test-subset_calendar_constrained_canonicalUtterance_train-200/results.json
  • CM (200): logs/overnight_GPT3_test-subset_calendar_constrained_meaningRepresentation_train-200/results.json
  • UC (200): logs/overnight_GPT3_test-subset_calendar_unconstrained-beam_canonicalUtterance_train-200/results.json
  • UM (200): logs/overnight_GPT3_test-subset_calendar_unconstrained-beam_meaningRepresentation_train-200/results.json
  • CC (20): logs/overnight_GPT3_test-subset_calendar_constrained_canonicalUtterance_train-20/results.json

Each point in the series gets its value from the "denotation/topN" field, where N varies between 1 and 10.

Break

Preliminary setup

Install our copy of break-evaluator so that it is available on your path.

PIPX_HOME=.pipx PIPX_BIN_DIR=.venv/bin pipx install --python 
   
     third_party/break-evaluator

   

Fine-tuning BART

export PRETRAINED_MODEL_DIR=facebook/bart-large
export TRAINED_MODEL_DIR=trained_models/

python -m semantic_parsing_with_constrained_lm.finetune.lm_finetune \
      --exp-names break_nested \
      --lr 1e-6 \
      --num-steps 20000 \
      --steps-per-save 20000 \
      --model-type BartV3 \
      --steps-per-decay 6 \
      --batch-size 32

python -m semantic_parsing_with_constrained_lm.finetune.lm_finetune \
      --exp-names break_QDMR \
      --lr 1e-5 \
      --num-steps 20000 \
      --steps-per-save 20000 \
      --model-type BartV3 \
      --steps-per-decay 2 \
      --batch-size 32

Table 3

Run the following commands:

# GPT-3
python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.qdmr_break_emnlp_camera_ready \
--log-dir logs/ \
--model GPT3 \
--eval-split dev-subset 

python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.qdmr_break_emnlp_camera_ready \
--log-dir logs/ \
--model GPT3 \
--eval-split dev-full

# BART
export PRETRAINED_MODEL_DIR=facebook/bart-large
export TRAINED_MODEL_DIR=trained_models/
python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.qdmr_break_emnlp_camera_ready \
--log-dir logs/ \
--model GPT3 \
--eval-split dev-full 

Then you can find the following results at the specified locations:

  • Wolfson et al: https://leaderboard.allenai.org/break/submission/c4b3v1j22jqbqs7it330
  • Coleman & Reneau: https://leaderboard.allenai.org/break/submission/c24mbsl7pqtiaau8vv00
  • GPT-3 Constrained Canonical, n = 1000: logs/break_GPT3_dev-subset_constrained_nested_train1000/results.json
  • GPT-3 Constrained Canonical, n = 100: logs/break_GPT3_dev-subset_constrained_nested_train100/results.json
  • GPT-3 Constrained Canonical, n = 25: logs/break_GPT3_dev-subset_constrained_nested_train25/results.json
  • GPT-3 Constrained Canonical, n = 200: logs/break_GPT3_dev-subset_constrained_nested_train200/results.json
  • GPT-3 Constrained Meaning, n = 200: logs/break_GPT3_dev-subset_constrained_QDMR_train200/results.json
  • GPT-3 Unconstrained Canonical, n = 200: logs/break_GPT3_dev-subset_unconstrained-greedy_nested_train200/results.json
  • GPT-3 Unconstrained Meaning, n = 200: logs/break_GPT3_dev-subset_unconstrained-greedy_QDMR_train200/results.json (horizontal rule)
  • GPT-3 Constrained Canonical, n = 200, full dev set: logs/break_GPT3_dev-full_constrained_nested_train200/results.json
  • BART Constrained Canonical, n = 200: logs/break_Bart_dev-full_constrained_nested_train200/results.json
  • BART Constrained Meaning, n = 200: logs/break_Bart_dev-full_constrained_QDMR_train200/results.json
  • BART Unconstrained Canonical, n = 200: logs/break_Bart_dev-full_unconstrained-greedy_nested_train200/results.json
  • BART Unconstrained Meaning, n = 200: logs/break_Bart_dev-full_unconstrained-greedy_QDMR_train200/results.json

In the results.json files, each number in the table comes from "break_metrics/nem @ 1".

Figure 3

Run the following command:

python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.qdmr_break_emnlp_camera_ready \
--log-dir logs/ \
--model GPT3 \
--eval-split dev-subset \
--exp-name-pattern '.*constrained.*train(1000|200)'

The data for the following series in the plot come from the following files:

  • CC (1000): logs/break_GPT3_dev-subset_constrained_nested_train1000/results.json
  • CM (1000): logs/break_GPT3_dev-subset_constrained_QDMR_train1000/results.json
  • CC (200): logs/break_GPT3_dev-subset_constrained_nested_train200/results.json
  • CM (200): logs/break_GPT3_dev-subset_constrained_QDMR_train200/results.json

Each point in the series gets its value from the "break_metrics/nem @ 1" field, where N varies between 1 and 10.

SMCalFlow

Preliminary setup

Create the SCFG and preprocess the data by running the following:

python -m semantic_parsing_with_constrained_lm.domains.calflow.write_data

This script will output semantic_parsing_with_constrained_lm/domains/calflow/grammar/grammar.scfg based on the .csv files in semantic_parsing_with_constrained_lm/domains/calflow/data. It will also download a version of SMCalFlow pre-processed to collapse certain nested function calls and remove re-entrancies (references to earlier nodes in the graph), and process them to create semantic_parsing_with_constrained_lm/domains/calflow/data/{test_200_uniform,train_300_stratified,train_1000_stratified,dev_all}.jsonl.

Fine-tuning BART

export PRETRAINED_MODEL_DIR=facebook/bart-large
export TRAINED_MODEL_DIR=trained_models/

python -m semantic_parsing_with_constrained_lm.finetune.lm_finetune \
      --exp-names calflow_canonicalUtterance \
      --lr 1e-5 \
      --num-steps 20000 \
      --steps-per-save 20000 \
      --model-type BartV3 \
      --steps-per-decay 2 \
      --batch-size 32

python -m semantic_parsing_with_constrained_lm.finetune.lm_finetune \
      --exp-names calflow_lispress \
      --lr 1e-5 \
      --num-steps 20000 \
      --steps-per-save 20000 \
      --model-type BartV3 \
      --steps-per-decay 2 \
      --batch-size 32

Table 4

Run the following commands:

# GPT-3
python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.calflow_emnlp_camera_ready \
--log-dir logs/ \
--model GPT3 \
--eval-split dev-full

python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.calflow_emnlp_camera_ready \
--log-dir logs/ \
--model GPT3 \
--eval-split dev-subset

# BART
export PRETRAINED_MODEL_DIR=facebook/bart-large
export TRAINED_MODEL_DIR=trained_models/
python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.calflow_emnlp_camera_ready \
--log-dir logs/ \
--model Bart \
--eval-split dev-full 

Then you can find the following results at the specified locations:

  • GPT-3 Constrained Canonical: logs/calflow_GPT3_dev-subset_constrained_canonicalUtterance_prompt20/results.json
  • GPT-3 Constrained Meaning: logs/calflow_GPT3_dev-subset_constrained_lispress_prompt20/results.json
  • GPT-3 Unconstrained Canonical: logs/calflow_GPT3_dev-subset_unconstrained-greedy_canonicalUtterance_prompt20/results.json
  • GPT-3 Unconstrained Meaning: logs/calflow_GPT3_dev-subset_unconstrained-greedy_lispress_prompt20/results.json (horizontal rule)
  • GPT-3 Constrained Canonical, full dev set: logs/calflow_GPT3_dev-full_constrained_canonicalUtterance_prompt20/results.json
  • BART Constrained Canonical: logs/calflow_Bart_dev-full_constrained_canonicalUtterance_prompt0/results.json
  • BART Constrained Meaning: logs/calflow_Bart_dev-full_constrained_lispress_prompt0/results.json
  • BART Unconstrained Canonical: logs/calflow_Bart_dev-full_unconstrained-greedy_canonicalUtterance_prompt0/results.json
  • BART Unconstrained Meaning: logs/calflow_Bart_dev-full_unconstrained-greedy_lispress_prompt0/results.json

In the results.json files, each number in the table comes from "roundtrip/top1".

Figure 4

Run the following commands:

python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.calflow_emnlp_camera_ready \
--log-dir logs/ \
--model GPT3 \
--eval-split dev-full

export PRETRAINED_MODEL_DIR=facebook/bart-large
export TRAINED_MODEL_DIR=trained_models/
python -m semantic_parsing_with_constrained_lm.run_exp \
--config-name semantic_parsing_with_constrained_lm.configs.calflow_emnlp_camera_ready \
--log-dir logs/ \
--model Bart \
--eval-split dev-full  \
--exp-name-pattern '.*constrained.*'

The data for the following series in the plot come from the following files:

  • GPT-3 CC: logs/calflow_GPT3_dev-subset_constrained_canonicalUtterance_prompt20/results.json
  • BART CC: logs/calflow_Bart_dev-full_constrained_canonicalUtterance_prompt0/results.json
  • BART CM: logs/calflow_Bart_dev-full_constrained_lispress_prompt0/results.json

Each point in the series gets its value from the "roundtrip/topN" field, where N varies between 1 and 10.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation

DistMIS Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation. DistriMIS Distributing Deep Learning Hyperparameter Tuning

HiEST 2 Sep 09, 2022
Show-attend-and-tell - TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Seokeon Choi 35 Oct 26, 2022
PyTorch implementation of the TTC algorithm

Trust-the-Critics This repository is a PyTorch implementation of the TTC algorithm and the WGAN misalignment experiments presented in Trust the Critic

0 Nov 29, 2021
Network Compression via Central Filter

Network Compression via Central Filter Environments The code has been tested in the following environments: Python 3.8 PyTorch 1.8.1 cuda 10.2 torchsu

2 May 12, 2022
Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

MetaSDF: Meta-learning Signed Distance Functions Project Page | Paper | Data Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely Gordon W

Vincent Sitzmann 100 Jan 01, 2023
RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues

RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues FGBG (foreground-background) pytorch package for defining and training model

Klaas Kelchtermans 1 Jun 02, 2022
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 73 Dec 24, 2022
A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

張致強 14 Dec 02, 2022
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
Official repository of my book: "Deep Learning with PyTorch Step-by-Step: A Beginner's Guide"

This is the official repository of my book "Deep Learning with PyTorch Step-by-Step". Here you will find one Jupyter notebook for every chapter in the book.

Daniel Voigt Godoy 340 Jan 01, 2023
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".

L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated p

Jiaqi Gu 9 Jul 14, 2022
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

6 Dec 19, 2022
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022