Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

Related tags

Deep Learningtf-fsvd
Overview

tf-fsvd

TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions

Cite

If you find our code useful, you may cite us as:

@inproceedings{haija2021fsvd,
  title={Fast Graph Learning with Unique Optimal Solutions},
  author={Sami Abu-El-Haija AND Valentino Crespi AND Greg Ver Steeg AND Aram Galstyan},
  year={2021},
  booktitle={arxiv:2102.08530},
}

Introduction

This codebase contains TensorFlow implementation of Functional SVD, an SVD routine that accepts objects with 3 attributes: dot, T, and shape. The object must be able to exactly multiply an (implicit) matrix M by any other matrix. Specifically, it should implement:

  1. dot(M1): should return M @ M1
  2. T: property should return another object that (implicitly) contains transpose of M.
  3. shape: property should return the shape of the (implicit) matrix M.

In most practical cases, M is implicit i.e. need not to be exactly computed. For consistency, such objects could inherit the abstract class ProductFn.

Simple Usage Example

Suppose you have an explicit sparse matrix mat

import scipy.sparse
import tf_fsvd

m = scipy.sparse.csr_mat( ... )
fn = tf_fsvd.SparseMatrixPF(m)

u, s, v = tf_fsvd.fsvd(fn, k=20)  # Rank 20 decomposition

The intent of this utility is for implicit matrices. For which, you may implement your own ProductFn class. You can take a look at BlockWisePF or WYSDeepWalkPF.

File Structure / Documentation

  • File tf_fsvd.py contains the main logic for TensorFlow implementation of Functional SVD (function fsvd), as well as a few classes for constructing implicit matrices.
    • SparseMatrixPF: when implicit matrix is a pre-computed sparse matrix. Using this class, you can now enjoy the equivalent of tf.linalg.svd on sparse tensors :-).
    • BlockWisePF: when implicit matrix is is column-wise concatenation of other implicit matrices. The concatenation is computed by suppling a list of ProductFn's
  • Directory implementations: contains implementations of simple methods employing fsvd.
  • Directory baselines: source code adapting competitive methods to produce metrics we report in our paper (time and accuracy).
  • Directory experiments: Shell scripts for running baselines and our implementations.
  • Directory results: Output directory containing results.

Running Experiments

ROC-AUC Link Prediction over AsymProj/WYS datasets

The AsymProj datasets are located in directory datasets/asymproj.

You can run the script for training on AsympProj datasets and measuring test ROC-AUC as:

python3 implementations/linkpred_asymproj.py

You can append flag --help to above to see which flags you can set for changing the dataset or the SVD rank.

You can run sweep on svd rank, for each of those datasets, by invoking:

# Sweep fSVD rank (k) on 4 link pred datasets. Make 3 runs per (dataset, k)
# Time is dominated by statement `import tensorflow as tf`
python3 experiments/fsvd_linkpred_k_sweep.py | bash  # You may remove "| bash" if you want to hand-pick commands.

# Summarize results onto CSV
python3 experiments/summarize_svdf_linkpred_sweep.py > results/linkpred_d_sweep/fsvd.csv

# Plot the sweep curve
python3 experiments/plot_sweep_k_linkpred.py

and running all printed commands. Alternatively, you can pipe the output of above to bash. This should populate directory results/linkpred_d_sweep/fsvd/.

Baselines

  • You can run the Watch Your Step baseline as:

     bash experiments/baselines/run_wys.sh
    

    which runs only once for every link prediction dataset. Watch Your Step spends some time computing the transition matrix powers (T^2, .., T^5).

  • You can run NetMF baselines (both approximate and exact) as:

    bash experiments/baselines/run_netmf.sh
    
  • You can run node2vec baseline as:

    experiments/baselines/run_n2v.sh
    

Classification Experiments over Planetoid Citation datasets

These datasets are from the planetoid paper. To obtain them, you should clone their repo:

mkdir -p ~/data
cd ~/data
git clone [email protected]:kimiyoung/planetoid.git

You can run the script for training and testing on planetoid datasets as:

python3 implementations/node_ssc_planetoid.py

You can append flag --help to above to see which flags you can set for changing the dataset or the number of layers.

You can sweep the number of layers running:

# Directly invokes python many times
LAYERS=`python3 -c "print(','.join(map(str, range(17))))"`
python3 experiments/planetoid_hp_search.py --wys_windows=1 --wys_neg_coefs=1 --layers=${LAYERS}

The script experiments/planetoid_hp_search.py directly invokes implementations/node_ssc_planetoid.py. You can visualize the accuracy VS depth curve by running:

python3 experiments/plot_sweep_depth_planetoid.py

Link Prediction for measuring [email protected] for Drug-Drug Interactions Network

You can run our method like:

python3 implementations/linkpred_ddi.py

This averages 10 runs (by default) and prints mean and standard deviation of validation and test metric ([email protected])

Owner
Sami Abu-El-Haija
Sami Abu-El-Haija
Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents

DeepXML Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents Architectures and algorithms DeepXML supports

Extreme Classification 49 Nov 06, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN πŸ™ƒ : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
A Haskell kernel for IPython.

IHaskell You can now try IHaskell directly in your browser at CoCalc or mybinder.org. Alternatively, watch a talk and demo showing off IHaskell featur

Andrew Gibiansky 2.4k Dec 29, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
Prometheus Exporter for data scraped from datenplattform.darmstadt.de

darmstadt-opendata-exporter Scrapes data from https://datenplattform.darmstadt.de and presents it in the Prometheus Exposition format. Pull requests w

Martin Weinelt 2 Apr 12, 2022
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
Active and Sample-Efficient Model Evaluation

Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! πŸ‘‹ This is code for "Active Testing: Sample-Efficient Model Evaluation". P

Jannik Kossen 19 Oct 30, 2022
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader πŸ”΄ IMPORTANT ❗ πŸ”΄ The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
project page for VinVL

VinVL: Revisiting Visual Representations in Vision-Language Models Updates 02/28/2021: Project page built. Introduction This repository is the project

308 Jan 09, 2023
JugLab 33 Dec 30, 2022
You Only πŸ‘€ One Sequence

You Only πŸ‘€ One Sequence TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO obje

Hust Visual Learning Team 666 Jan 03, 2023
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
Dynamica causal Bayesian optimisation

Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th

nd308 18 Nov 22, 2022
Simulation of Self Driving Car

In this repository, the code to use Udacity's self driving car simulator as a testbed for training an autonomous car are provided.

Shyam Das Shrestha 1 Nov 21, 2021
[CVPR2021] De-rendering the World's Revolutionary Artefacts

De-rendering the World's Revolutionary Artefacts Project Page | Video | Paper In CVPR 2021 Shangzhe Wu1,4, Ameesh Makadia4, Jiajun Wu2, Noah Snavely4,

49 Nov 06, 2022
[AAAI 2022] Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation with Limited Annotation

A paper Introduction This is an official release of the paper Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation wit

Jiacheng Wang 14 Dec 08, 2022
Pytorch implementation of Integrating Tree Path in Transformer for Code Representation

This is an official Pytorch implementation of the approaches proposed in: Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, Zhi Jin β€œIntegrating Tree Path in

Han Peng 16 Dec 23, 2022
TigerLily: Finding drug interactions in silico with the Graph.

Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de

Benedek Rozemberczki 91 Dec 30, 2022
Transfer style api - An API to use with Tranfer Style App, where you can use two image and transfer the style

Transfer Style API It's an API to use with Tranfer Style App, where you can use

Brian Alejandro 1 Feb 13, 2022