[CVPR2021] De-rendering the World's Revolutionary Artefacts

Overview

De-rendering the World's Revolutionary Artefacts

Project Page | Video | Paper

In CVPR 2021

Shangzhe Wu1,4, Ameesh Makadia4, Jiajun Wu2, Noah Snavely4, Richard Tucker4, Angjoo Kanazawa3,4

1 University of Oxford, 2 Stanford University, 3 University of California, Berkeley, 4 Google Research

teaser.mp4

We propose a model that de-renders a single image of a vase into shape, material and environment illumination, trained using only a single image collection, without explicit 3D, multi-view or multi-light supervision.

Setup (with conda)

1. Install dependencies:

conda env create -f environment.yml

OR manually:

conda install -c conda-forge matplotlib opencv scikit-image pyyaml tensorboard

2. Install PyTorch:

conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch

Note: The code is tested with PyTorch 1.4.0 and CUDA 10.1. A GPU version is required, as the neural_renderer package only has a GPU implementation.

3. Install neural_renderer:

This package is required for training and testing, and optional for the demo. It requires a GPU device and GPU-enabled PyTorch.

pip install neural_renderer_pytorch==1.1.3

Note: If this fails or runtime error occurs, try compiling it from source. If you don't have a gcc>=5, you could one available on conda: conda install gxx_linux-64=7.3.

git clone https://github.com/daniilidis-group/neural_renderer.git
cd neural_renderer
python setup.py install

Datasets

1. Metropolitan Museum Vases

This vase dataset is collected from Metropolitan Museum of Art Collection through their open-access API under the CC0 License. It contains 1888 training images and 526 testing images of museum vases with segmentation masks obtained using PointRend and GrabCut.

Download the preprocessed dataset using the provided script:

cd data && sh download_met_vases.sh

2. Synthetic Vases

This synthetic vase dataset is generated with random vase-like shapes, poses (elevation), lighting (using spherical Gaussian) and shininess materials. The diffuse texture is generated using the texture maps provided in CC0 Textures under the CC0 License.

Download the dataset using the provided script:

cd data && sh download_syn_vases.sh

Pretrained Models

Download the pretrained models using the scripts provided in pretrained/, eg:

cd pretrained && sh download_pretrained_met_vase.sh

Training and Testing

Check the configuration files in configs/ and run experiments, eg:

python run.py --config configs/train_met_vase.yml --gpu 0 --num_workers 4

Evaluation on Synthetic Vases

Check and run:

python eval/eval_syn_vase.py

Render Animations

To render animations of rotating vases and rotating light, check and run this script:

python render_animation.py

Citation

@InProceedings{wu2021derender,
  author={Shangzhe Wu and Ameesh Makadia and Jiajun Wu and Noah Snavely and Richard Tucker and Angjoo Kanazawa},
  title={De-rendering the World's Revolutionary Artefacts},
  booktitle = {CVPR},
  year = {2021}
}
Data for "Driving the Herd: Search Engines as Content Influencers" paper

herding_data Data for "Driving the Herd: Search Engines as Content Influencers" paper Dataset description The collection contains 2250 documents, 30 i

0 Aug 17, 2021
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
Code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language"

The repository provides the source code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language" submitted to HA

Sherzod Hakimov 3 Aug 04, 2022
TAP: Text-Aware Pre-training for Text-VQA and Text-Caption, CVPR 2021 (Oral)

TAP: Text-Aware Pre-training TAP: Text-Aware Pre-training for Text-VQA and Text-Caption by Zhengyuan Yang, Yijuan Lu, Jianfeng Wang, Xi Yin, Dinei Flo

Microsoft 61 Nov 14, 2022
PyTorch Implementation of Sparse DETR

Sparse DETR By Byungseok Roh*, Jaewoong Shin*, Wuhyun Shin*, and Saehoon Kim at Kakao Brain. (*: Equal contribution) This repository is an official im

Kakao Brain 113 Dec 28, 2022
Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER 🦌 🦒 Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEE

33 Dec 23, 2022
Pytorch implementation of Nueral Style transfer

Nueral Style Transfer Pytorch implementation of Nueral style transfer algorithm , it is used to apply artistic styles to content images . Content is t

Abhinav 9 Oct 15, 2022
Generate vibrant and detailed images using only text.

CLIP Guided Diffusion From RiversHaveWings. Generate vibrant and detailed images using only text. See captions and more generations in the Gallery See

Clay M. 401 Dec 28, 2022
Code & Data for Enhancing Photorealism Enhancement

Enhancing Photorealism Enhancement Stephan R. Richter, Hassan Abu AlHaija, Vladlen Koltun Paper | Website (with side-by-side comparisons) | Video (Pap

Intelligent Systems Lab Org 1.1k Dec 31, 2022
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023
CS50x-AI - Artificial Intelligence with Python from Harvard University

CS50x-AI Artificial Intelligence with Python from Harvard University 📖 Table of

Hosein Damavandi 6 Aug 22, 2022
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)

InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm

Fan-Yun Sun 232 Dec 28, 2022
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022
Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

GMR(Camera Motion Agnostic 3D Human Pose Estimation) This repo provides the source code of our arXiv paper: Seong Hyun Kim, Sunwon Jeong, Sungbum Park

Seong Hyun Kim 1 Feb 07, 2022
This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

Auto-Lambda This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationship

Shikun Liu 76 Dec 20, 2022
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

Katherine Crowson 53 Dec 29, 2022
Code for the paper: Audio-Visual Scene Analysis with Self-Supervised Multisensory Features

[Paper] [Project page] This repository contains code for the paper: Andrew Owens, Alexei A. Efros. Audio-Visual Scene Analysis with Self-Supervised Mu

Andrew Owens 202 Dec 13, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022