[CVPR2021] De-rendering the World's Revolutionary Artefacts

Overview

De-rendering the World's Revolutionary Artefacts

Project Page | Video | Paper

In CVPR 2021

Shangzhe Wu1,4, Ameesh Makadia4, Jiajun Wu2, Noah Snavely4, Richard Tucker4, Angjoo Kanazawa3,4

1 University of Oxford, 2 Stanford University, 3 University of California, Berkeley, 4 Google Research

teaser.mp4

We propose a model that de-renders a single image of a vase into shape, material and environment illumination, trained using only a single image collection, without explicit 3D, multi-view or multi-light supervision.

Setup (with conda)

1. Install dependencies:

conda env create -f environment.yml

OR manually:

conda install -c conda-forge matplotlib opencv scikit-image pyyaml tensorboard

2. Install PyTorch:

conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch

Note: The code is tested with PyTorch 1.4.0 and CUDA 10.1. A GPU version is required, as the neural_renderer package only has a GPU implementation.

3. Install neural_renderer:

This package is required for training and testing, and optional for the demo. It requires a GPU device and GPU-enabled PyTorch.

pip install neural_renderer_pytorch==1.1.3

Note: If this fails or runtime error occurs, try compiling it from source. If you don't have a gcc>=5, you could one available on conda: conda install gxx_linux-64=7.3.

git clone https://github.com/daniilidis-group/neural_renderer.git
cd neural_renderer
python setup.py install

Datasets

1. Metropolitan Museum Vases

This vase dataset is collected from Metropolitan Museum of Art Collection through their open-access API under the CC0 License. It contains 1888 training images and 526 testing images of museum vases with segmentation masks obtained using PointRend and GrabCut.

Download the preprocessed dataset using the provided script:

cd data && sh download_met_vases.sh

2. Synthetic Vases

This synthetic vase dataset is generated with random vase-like shapes, poses (elevation), lighting (using spherical Gaussian) and shininess materials. The diffuse texture is generated using the texture maps provided in CC0 Textures under the CC0 License.

Download the dataset using the provided script:

cd data && sh download_syn_vases.sh

Pretrained Models

Download the pretrained models using the scripts provided in pretrained/, eg:

cd pretrained && sh download_pretrained_met_vase.sh

Training and Testing

Check the configuration files in configs/ and run experiments, eg:

python run.py --config configs/train_met_vase.yml --gpu 0 --num_workers 4

Evaluation on Synthetic Vases

Check and run:

python eval/eval_syn_vase.py

Render Animations

To render animations of rotating vases and rotating light, check and run this script:

python render_animation.py

Citation

@InProceedings{wu2021derender,
  author={Shangzhe Wu and Ameesh Makadia and Jiajun Wu and Noah Snavely and Richard Tucker and Angjoo Kanazawa},
  title={De-rendering the World's Revolutionary Artefacts},
  booktitle = {CVPR},
  year = {2021}
}
PyTorch implementation of Pay Attention to MLPs

gMLP PyTorch implementation of Pay Attention to MLPs. Quickstart Clone this repository. git clone https://github.com/jaketae/g-mlp.git Navigate to th

Jake Tae 34 Dec 13, 2022
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
Objax Apache-2Objax (🥉19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Google 729 Jan 02, 2023
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection Turning pixels into virtual points for multimodal 3D object detection. Multimodal Virtual Point 3D Detection, Ti

Tianwei Yin 204 Jan 08, 2023
League of Legends Reinforcement Learning Environment (LoLRLE) multiple training scenarios using PPO.

League of Legends Reinforcement Learning Environment (LoLRLE) About This repo contains code to train an agent to play league of legends in a distribut

2 Aug 19, 2022
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
WatermarkRemoval-WDNet-WACV2021

WatermarkRemoval-WDNet-WACV2021 Thank you for your attention. Citation Please cite the related works in your publications if it helps your research: @

LUYI 63 Dec 05, 2022
Hardware accelerated, batchable and differentiable optimizers in JAX.

JAXopt Installation | Examples | References Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX. Installation JAXopt can be

Google 621 Jan 08, 2023
Set of models for classifcation of 3D volumes

Classification models 3D Zoo - Keras and TF.Keras This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNet

69 Dec 28, 2022
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
Python版OpenCVのTracking APIのサンプルです。DaSiamRPNアルゴリズムまで対応しています。

OpenCV-Object-Tracker-Sample Python版OpenCVのTracking APIのサンプルです。   Requirement opencv-contrib-python 4.5.3.56 or later Algorithm 2021/07/16時点でOpenCVには以

KazuhitoTakahashi 36 Jan 01, 2023
Official repo for QHack—the quantum machine learning hackathon

Note: This repository has been frozen while we consider the submissions for the QHack Open Hackathon. We hope you enjoyed the event! Welcome to QHack,

Xanadu 118 Jan 05, 2023
Image Completion with Deep Learning in TensorFlow

Image Completion with Deep Learning in TensorFlow See my blog post for more details and usage instructions. This repository implements Raymond Yeh and

Brandon Amos 1.3k Dec 23, 2022
[ICCV 2021] Our work presents a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis.

MVSNeRF Project page | Paper This repository contains a pytorch lightning implementation for the ICCV 2021 paper: MVSNeRF: Fast Generalizable Radiance

Anpei Chen 529 Dec 30, 2022
Code for our NeurIPS 2021 paper Mining the Benefits of Two-stage and One-stage HOI Detection

CDN Code for our NeurIPS 2021 paper "Mining the Benefits of Two-stage and One-stage HOI Detection". Contributed by Aixi Zhang*, Yue Liao*, Si Liu, Mia

71 Dec 14, 2022
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
Weakly Supervised Scene Text Detection using Deep Reinforcement Learning

Weakly Supervised Scene Text Detection using Deep Reinforcement Learning This repository contains the setup for all experiments performed in our Paper

Emanuel Metzenthin 3 Dec 16, 2022