Implementation of Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

Overview

acLSTM_motion

This folder contains an implementation of acRNN for the CMU motion database written in Pytorch.

See the following links for more background:

Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

CMU Motion Capture Database

Prequisite

You need to install python3.6 (python 2.7 should also be fine) and pytorch. You will also need to have transforms3d, which can be installed by using this command:

pip install transforms3d

Data Preparation

To begin, you need to download the motion data form the CMU motion database in the form of bvh files. I have already put some sample bvh files including "salsa", "martial" and "indian" in the "train_data_bvh" folder.

Then to transform the bvh files into training data, go to the folder "code" and run generate_training_data.py. You will need to change the directory of the source motion folder and the target motioin folder on the last line. If you don't change anything, this code will create a directory "../train_data_xyz/indian" and generate the training data for indian dances in this folder.

Training

After generating the training data, you can start to train the network by running the pytorch_train_aclstm.py. Again, you need to change some directories on the last few lines in the code, including "dances_folder" which is the location of the training data, "write_weight_folder" which is the location to save the weights of the network during training, "write_bvh_motion_folder" which is the location to save the temporate output of the network and the groundtruth motion sequences in the form of bvh, and "read_weight_path" which is the path of the network weights if you want to train the network from some pretrained weights other than from begining in which case it is set as "". If you don't change anything, this code will train the network upon the indian dance data and create two folders ("../train_weight_aclstm_indian/" and "../train_tmp_bvh_aclstm_indian/") to save the weights and temporate outputs.

Testing

When the training is done, you can use pytorch_test_synthesize_motion.py to synthesize motions. You will need to change the last few lines to set the "read_weight_path" which is the location of the weights of the network you want to test, "write_bvh_motion_folder" which is the location of the output motions, "dances_folder" is the where the code randomly picked up a short initial sequence from. You may also want to set the "batch" to determine how many motion clips you want to generate, the "generate_frames_numbers" to determine the length of the motion clips et al.. If you don't change anything, the code will read the weights from the 86000th iteration and generate 5 indian dances in the form of bvh to "../test_bvh_aclstm_indian/".

The output motions from the network usually have artifacts of sliding feet and sometimes underneath-ground feet. If you are not satisfied with these details, you can use fix_feet.py to solve it. The algorithm in this code is very simple and you are welcome to write a more complex version that can preserve the kinematics of the human body and share it to us.

For rendering the bvh motion, you can use softwares like MotionBuilder, Maya, 3D max or most easily, use an online BVH renderer for example: http://lo-th.github.io/olympe/BVH_player.html

Enjoy!

Owner
Yi_Zhou
I am a PHD student at University of Southern California.
Yi_Zhou
A list of Machine Learning Art Colabs

ML Visual Art Colabs A list of cool Colabs on Machine Learning Imagemaking or other artistic purposes 3D Ken Burns Effect Ken Burns Effect by Manuel R

Derrick Schultz (he/him) 789 Dec 12, 2022
Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows Official implementation of the paper DeFlow: Learning Complex Im

Valentin Wolf 86 Nov 16, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Multiview Orthographic Feature Transformation for 3D Object Detection Multiview 3D object detection on MultiviewC dataset through moft3d. Introduction

Jiahao Ma 20 Dec 21, 2022
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
The official project of SimSwap (ACM MM 2020)

SimSwap: An Efficient Framework For High Fidelity Face Swapping Proceedings of the 28th ACM International Conference on Multimedia The official reposi

Six_God 2.6k Jan 08, 2023
Bot developed in Python that automates races in pegaxy.

español | português About it: This is a fork from pega-racing-bot. This bot, developed in Python, is to automate races in pegaxy. The game developers

4 Apr 08, 2022
Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose Paper | Website | Data A-NeRF: Articulated Neural Radiance F

Shih-Yang Su 172 Dec 22, 2022
A JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

BraVe This is a JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short. The model provided in this package wa

DeepMind 44 Nov 20, 2022
[CVPR 2020] Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation

Contents Local and Global GAN Cross-View Image Translation Semantic Image Synthesis Acknowledgments Related Projects Citation Contributions Collaborat

Hao Tang 131 Dec 07, 2022
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks

GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C

GANs in Action 914 Dec 21, 2022
[ICCV 2021] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration Introduction The repository contains the source code and pre-tr

Intelligent Sensing, Perception and Computing Group 55 Dec 14, 2022
Tensorflow implementation of "BEGAN: Boundary Equilibrium Generative Adversarial Networks"

BEGAN in Tensorflow Tensorflow implementation of BEGAN: Boundary Equilibrium Generative Adversarial Networks. Requirements Python 2.7 or 3.x Pillow tq

Taehoon Kim 922 Dec 21, 2022
SANet: A Slice-Aware Network for Pulmonary Nodule Detection

SANet: A Slice-Aware Network for Pulmonary Nodule Detection This paper (SANet) has been accepted and early accessed in IEEE TPAMI 2021. This code and

Jie Mei 39 Dec 17, 2022
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022
Character Grounding and Re-Identification in Story of Videos and Text Descriptions

Character in Story Identification Network (CiSIN) This project hosts the code for our paper. Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung and

8 Dec 09, 2022
Official implementation of the paper "Topographic VAEs learn Equivariant Capsules"

Topographic Variational Autoencoder Paper: https://arxiv.org/abs/2109.01394 Getting Started Install requirements with Anaconda: conda env create -f en

T. Andy Keller 69 Dec 12, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021