Measures input lag without dedicated hardware, performing motion detection on recorded or live video

Overview

What is InputLagTimer?

This tool can measure input lag by analyzing a video where both the game controller and the game screen can be seen on a webcam or a video file.

Here's how it looks in action:

Usage demo

Even though the typical usage is game latency, InputLagTimer can measure any latency so long as it's captured on video. For example, if you point a camera at both your car key and its door lock, you can measure how fast that remote unlocks your car.

How does it measure input lag?

You first mark two rectangles in the video you provide:

  • 🟦 Input rectangle (blue): where the input motion happens. Such as a gamepad stick.
  • 🟪 Output rectangle (purple): where the response will be visible. Such as the middle left of your TV screen, where the front wheels can be seen turning in your car simulator.

InputLagTimer will detect motion on the input area, and time how long it takes to detect motion on the output area.

Things should work for latencies of up to 700ms; if you need to measure slower events, the limit can be trivially edited in code.

How to use it:

  1. Download InputLagTimer (some windows binaries are available on github if you prefer that)
  2. Open InputLagTimer:
    • Plug your webcam then run the program.
    • Or drag-and-drop your video file to the program.
    • Or, from command line, type InputLagTimer 2 to open the 3rd webcam, or InputLagTimer file.mp4 to open a file.
  3. Press S then follow screen instructions to select the 🟦 input and 🟪 output rectangles.
  4. Observe the input and output motion bars at the top, and press 1/2 and 3/4 to adjust the motion detection thresholds (white indicator). Latency timing will start when the input motion passes the threshold, and stop when the output motion does.

Note: a .cfg file will be created for each video, allowing to reproduce the same latency analysis.

Tips and gotchas

  • Use a tripod to hold the camera. The InputLagTimer is based on motion detection, therefore hand-held footage is doomed to spam false positives.
  • Disable gamepad vibration and put the gamepad in a table (unless you want to measure vibration-latency!): in other words,reduce unnecessary motion from both the input and output rectangles.
  • Select the 🟦 input and 🟪 output rectangles as accurately as possible. E.g. to measure keyboard key travel time, draw an input rectangle including the entire key height. If you don't want to include key travel latency, draw the input rectangle as close to the key activation point as possible.
  • If using certain artificial lights, enable camera's anti-flicker feature when available (press C in InputLagTimer when using a webcam), or choose a recording framerate different than the powerline frequency used in your country (often 50Hz or 60Hz). This removes video flicker, vastly improving motion detection.
  • Prefer higher recording framerate, this provides finer-grained latency measurements:
    • Some phones and actioncams can reach hundreds of FPS.
    • Recording equipment may not reach its advertised framerate if it's not bright enough. If in doubt, add more lighting.
  • If your camera cannot reach the requested framerate (e.g. it only manages to capture 120FPS out of 240FPS, due to lack of light), consider recording directly at the reachable framerate. This eliminates the useless filler frames your camera was forced to duplicate, making it easier to tune the motion detection thresholds in InputLagTimer.
  • Prefer global shutter over rolling shutter cameras. Rolling shutter can slightly skew latency measurements, as one corner of the image is recorded earlier than the oposite corner.

Rolling Shutter example

(source: Axel1963 - CC BY-SA 3.0)

  • Screens normally refresh pixels from the top earlier than pixels from the bottom (or left before right, etc). The location of 🟦 input/ 🟪 output rectangles in a screen can slightly skew latency measurements.
  • The pixels on a screen can take longer or shorter to update, depending on:
    • Pixel color. E.g. white-to-black response time might be longer than black-to-white.
    • Panel type. E.g. OLED will normally be much quicker than LCD panels.
    • Screen configuration. E.g. enabling 'overdrive', enabling 'game mode', etc.
  • Press A (Advanced mode) to see more keys and additional information.

Advanced Mode screenshot

Dependencies

To run the EXE, you don't need anythig else. So move along, nothing to see in this section :)

To run the python code directly, you'll need opencv for python, numpy, and whichever python interpreter you prefer.

To build the binary (with compile.py), you'll need PyInstaller.

Credits and licenses

InputLagTimer software:

Copyright 2021 Bruno Gonzalez Campo | [email protected] | @stenyak

Distributed under MIT license (see license.txt)

InputLagTimer icon:

Copyright 2021 Bruno Gonzalez Campo | [email protected] | @stenyak

Distributed under CC BY 3.0 license (see license_icon.txt)

Icon derived from:

You might also like...
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image, and next a ResNet50 model trained on ImageNet is used to label each box.

Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONNX.
Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONNX.

ONNX-HybridNets-Multitask-Road-Detection Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONN

This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

NeuralCompression is a Python repository dedicated to research of neural networks that compress data

NeuralCompression is a Python repository dedicated to research of neural networks that compress data. The repository includes tools such as JAX-based entropy coders, image compression models, video compression models, and metrics for image and video evaluation.

SCAAML is a deep learning framwork dedicated to side-channel attacks run on top of TensorFlow 2.x.
SCAAML is a deep learning framwork dedicated to side-channel attacks run on top of TensorFlow 2.x.

SCAAML (Side Channel Attacks Assisted with Machine Learning) is a deep learning framwork dedicated to side-channel attacks. It is written in python and run on top of TensorFlow 2.x.

NeoPlay is the project dedicated to ESport events.

NeoPlay is the project dedicated to ESport events. On this platform users can participate in tournaments with prize pools as well as create their own tournaments.

This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used to detect whether each face detected by the cv2 face detection dnn is wearing a mask

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Official implementation of the network presented in the paper
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Releases(v1.2)
  • v1.2(Mar 29, 2022)

    • Display summary of measured latencies: min/avg/max latencies and a histogram
    • Added display with the current framerate
    • Fixed incorrect timing when a webcam dropped below the advertised framerate
    • The 'a' key will now cycle between varying amounts of detail (more detail can lead to lower framerates)
    • Add CC license links on readme
    • Minor cleanups here and there

    Full Changelog: https://github.com/stenyak/inputLagTimer/compare/v1.1...v1.2

    Source code(tar.gz)
    Source code(zip)
    InputLagTimer.exe(50.81 MB)
  • v1.1(Jan 8, 2022)

    • Fix safety timeout kicking in too soon if using a custom maxLatency
    • Fix first webcam being ignored when running the program without arguments
    • Rename compiled file from camelCase to CamelCase

    Full Changelog: https://github.com/stenyak/inputLagTimer/compare/v1.0...v1.1

    Source code(tar.gz)
    Source code(zip)
    InputLagTimer.exe(49.22 MB)
  • v1.0(Jan 8, 2022)

[AAAI2021] The source code for our paper 《Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion》.

DSM The source code for paper Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion Project Website; Datasets li

Jinpeng Wang 114 Oct 16, 2022
Neural Network Libraries

Neural Network Libraries Neural Network Libraries is a deep learning framework that is intended to be used for research, development and production. W

Sony 2.6k Dec 30, 2022
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Let's Git - Versionsverwaltung & Open Source Hausaufgabe Herzlich Willkommen zu dieser Hausaufgabe für unseren MOOC: Let's Git! Wir hoffen, dass Du vi

1 Dec 13, 2021
TextureGAN in Pytorch

TextureGAN This code is our PyTorch implementation of TextureGAN [Project] [Arxiv] TextureGAN is a generative adversarial network conditioned on sketc

Patsorn 147 Dec 14, 2022
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
KIDA: Knowledge Inheritance in Data Aggregation

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

24 Sep 08, 2022
Implementation of Shape and Electrostatic similarity metric in deepFMPO.

DeepFMPO v3D Code accompanying the paper "On the value of using 3D-shape and electrostatic similarities in deep generative methods". The paper can be

34 Nov 28, 2022
Modular Gaussian Processes

Modular Gaussian Processes for Transfer Learning 🧩 Introduction This repository contains the implementation of our paper Modular Gaussian Processes f

Pablo Moreno-Muñoz 10 Mar 15, 2022
Learning multiple gaits of quadruped robot using hierarchical reinforcement learning

Learning multiple gaits of quadruped robot using hierarchical reinforcement learning We propose a method to learn multiple gaits of quadruped robot us

Yunho Kim 17 Dec 11, 2022
Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2

Graph Transformer - Pytorch Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2. This was recently used by bot

Phil Wang 97 Dec 28, 2022
✂️ EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video.

EyeLipCropper EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video. The whole process consists of three parts: frame extracti

Zi-Han Liu 9 Oct 25, 2022
Model that predicts the probability of a Twitter user being anti-vaccination.

stylebody {text-align: justify}/style AVAXTAR: Anti-VAXx Tweet AnalyzeR AVAXTAR is a python package to identify anti-vaccine users on twitter. The

10 Sep 27, 2022
PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

Dynamic Data Augmentation with Gating Networks This is an official PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

九州大学 ヒューマンインタフェース研究室 3 Oct 26, 2022
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022
Multi Agent Path Finding Algorithms

MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S

30 Dec 12, 2022
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

zshicode 1 Nov 18, 2021
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022
An implementation of the BADGE batch active learning algorithm.

Batch Active learning by Diverse Gradient Embeddings (BADGE) An implementation of the BADGE batch active learning algorithm. Details are provided in o

125 Dec 24, 2022